Неполные квадратные уравнения
теория по математике 📈 уравнения
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.
Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.
Неполное квадратное уравнение при b=0: ax 2 +c=0
Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х 2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).
Пример №1. Решить уравнение:
Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х 2 =45; найдем переменную в квадрате, поделив обе части уравнения на 5: х 2 =9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:
Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым). Пример №2. Решить уравнение:
Выполним решение уже известным способом: –6х 2 =90. х 2 =–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней. Пример №3. Решить уравнение:
Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.
Неполное квадратное уравнение при с=0: ax 2 +bx=0
Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.
Пример №4. Решить уравнение:
Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.
Пример №5. Решить уравнение:
Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.
Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax 2 =0
Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.
Пример №6. Решить уравнение:
Обе части уравнения делим на (–14) и получаем х 2 =0, откуда соответственно и единственный корень – нуль. Пример №6. Решить уравнение:
Также делим обе части на 23 и получаем х 2 =0. Значит, корень уравнения – нуль.
Неполные квадратные уравнения
О чем эта статья:
Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).
Основные понятия
Уравнение — это математическое равенство, в котором неизвестна одна или несколько величин. Значение неизвестных нужно найти так, чтобы при их подстановке в пример получилось верное числовое равенство.
Степень уравнения можно определить по наибольшей степени, в которой стоит неизвестное. Если неизвестное стоит во второй степени — это квадратное уравнение.
Квадратное уравнение — это ax² + bx + c = 0, где a — первый или старший коэффициент, не равный нулю, b — второй коэффициент, c — свободный член.
Чтобы определить, сколько корней имеет уравнение, нужно обратить внимание на дискриминант. Чтобы его найти, берем формулу: D = b² − 4ac. А вот свойства дискриминанта:
- если D 0, есть два различных корня.
Неполное квадратное уравнение — это уравнение вида ax² + bx + c = 0, где хотя бы один из коэффициентов b или c равен нулю.
- Если b = 0, то квадратное уравнение принимает вид ax² + 0x+c=0 и оно равносильно ax² + c = 0.
- Если c = 0, то квадратное уравнение выглядит так ax² + bx + 0 = 0, иначе его можно написать как ax² + bx = 0.
- Если b = 0 и c = 0, то квадратное уравнение выглядит так ax² = 0.
Такие уравнения отличаются от полного квадратного тем, что их левые части не содержат слагаемого с неизвестной переменной, либо свободного члена, либо и того и другого. Отсюда и их название — неполные квадратные уравнения.
Решение неполных квадратных уравнений
Как мы уже знаем, есть три формулы неполных квадратных уравнений:
- ax² = 0, ему отвечают коэффициенты b = 0 и c = 0;
- ax² + c = 0, при b = 0;
- ax² + bx = 0, при c = 0.
Для тех, кто хочет связать свою жизнь с точными науками, Skysmart предлагает курс подготовки к ЕГЭ по математике (профиль).
Как решить уравнение ax² = 0
Начнем с решения неполных квадратных уравнений, в которых b и c равны нулю, то есть, с уравнений вида ax² = 0.
Уравнение ax² = 0 равносильно x² = 0. Такое преобразование возможно, когда мы разделили обе части на некое число a, которое не равно нулю. Корнем уравнения x² = 0 является нуль, так как 0² = 0. Других корней у этого уравнения нет, что подтверждают свойства степеней.
Таким образом, неполное квадратное уравнение ax² = 0 имеет единственный корень x = 0.
Пример 1. Решить −5x² = 0.
- Замечаем, что данному уравнению равносильно x2 = 0, значит исходное уравнение имеет единственный корень — нуль.
- По шагам решение выглядит так:
Записывайся на дополнительные уроки по математике онлайн, с нашими лучшими преподавателями! Для учеников с 1 по 11 класса!
Как решить уравнение ax² + с = 0
Обратим внимание на неполные квадратные уравнения вида ax² + c = 0, в которых b = 0, c ≠ 0. Мы знаем, что слагаемые в уравнениях носят двусторонние куртки: когда мы переносим их из одной части уравнения в другую, они надевает куртку на другую сторону — меняют знак на противоположный.
Еще мы знаем, что если обе части уравнения поделить на одно и то же число (кроме нуля) — у нас получится равносильное уравнение. То есть одно и то же, только с другими цифрами.
Держим все это в голове и колдуем над неполным квадратным уравнением (производим «равносильные преобразования»): ax² + c = 0:
- перенесем c в правую часть: ax² = — c,
- разделим обе части на a: x² = — c/а.
Ну все, теперь мы готовы к выводам о корнях неполного квадратного уравнения. В зависимости от значений a и c, выражение — c/а может быть отрицательным или положительным. Разберем конкретные случаи.
Если — c/а 0, то корни уравнения x² = — c/а будут другими. Например, можно использовать правило квадратного корня и тогда корень уравнения равен числу √- c/а, так как (√- c/а)² = — c/а. Кроме того, корнем уравнения может стать -√- c/а, так как (-√- c/а)² = — c/а. Ура, больше у этого уравнения нет корней.
В двух словах
Неполное квадратное уравнение ax² + c = 0 равносильно уравнению ax² + c = 0, которое:
- не имеет корней при — c/а 0.
Пример 1. Найти решение уравнения 9x² + 4 = 0.
-
Перенесем свободный член в правую часть:
Разделим обе части на 9:
Ответ: уравнение 9x² + 4 = 0 не имеет корней.
Пример 2. Решить -x² + 9 = 0.
-
Перенесем свободный член в правую часть:
Разделим обе части на -1:
Ответ: уравнение -x² + 9 = 0 имеет два корня -3; 3.
Как решить уравнение ax² + bx = 0
Осталось разобрать третий вид неполных квадратных уравнений, когда c = 0.
Квадратное уравнение без с непривычно решать только первые несколько примеров. Запомнив алгоритм, будет значительно проще щелкать задачки из учебника.
Неполное квадратное уравнение ax² + bx = 0 можно решить методом разложения на множители. Разложим на множители многочлен, который расположен в левой части уравнения — вынесем за скобки общий множитель x.
Теперь можем перейти от исходного уравнения к равносильному x * (ax + b) = 0. А это уравнение равносильно совокупности двух уравнений x = 0 и ax + b = 0, последнее — линейное, его корень x = −b/a.
Таким образом, неполное квадратное уравнение ax² + bx = 0 имеет два корня:
Пример 1. Решить уравнение 2x² — 32x = 0
-
Вынести х за скобки
Ответ: х = 0 и х = 16.
Пример 2. Решить уравнение 3x² — 12x = 0
Разложить левую часть уравнения на множители и найти корни:
Дискриминант квадратного уравнения
Дискриминант квадратного уравнения — это выражение, находящееся под корнем в формуле нахождения корней квадратного уравнения. Дискриминант обозначается латинской буквой D.
Вид уравнения | Формула корней | Формула дискриминанта |
---|---|---|
ax 2 + bx + c = 0 | b 2 — 4ac | |
ax 2 + 2kx + c = 0 | k 2 — ac | |
x 2 + px + q = 0 | ||
p 2 — 4q |
Все формулы нахождения корней квадратных уравнений можно записать короче с помощью дискриминанта:
Вид уравнения | Формула |
---|---|
ax 2 + bx + c = 0 | |
ax 2 + 2kx + c = 0 | |
x 2 + px + q = 0 | |
Дискриминант позволяет определить, имеет ли уравнение корни и сколько их, не решая само уравнение:
- Если дискриминант больше нуля, то уравнение имеет два корня.
- Если дискриминант равен нулю, то уравнение имеет один корень.
- Если дискриминант меньше нуля, то уравнение не имеет корней.
Несмотря на то, что есть несколько формул дискриминанта, чаще всего используют первую:
так как она относится к формуле:
,
которая является универсальной формулой нахождения корней квадратного уравнения. Данная формула подходит даже для неполных квадратных уравнений.
Решение квадратных уравнений через дискриминант
Для решения квадратного уравнения по формуле можно сначала вычислить дискриминант и сравнить его с нулём. В зависимости от результата, либо искать корни по формуле, либо сделать вывод, что корней нет.
Пример 1. Решить уравнение:
Определим, чему равны коэффициенты:
D = b 2 — 4ac = (-4) 2 — 4 · 3 · 2 = 16 — 24 = -8,
Определим, чему равны коэффициенты:
D = b 2 — 4ac = (-6) 2 — 4 · 1 · 9 = 36 — 36 = 0,
Уравнение имеет всего один корень:
Определим, чему равны коэффициенты:
D = b 2 — 4ac = (-4) 2 — 4 · 1 · (-5) = 16 + 20 = 36,
http://skysmart.ru/articles/mathematic/nepolnye-kvadratnye-uravneniya
http://izamorfix.ru/matematika/algebra/diskriminant.html
Квадратным уравнением называется уравнение вида ax2+bx+c=0, где х – переменная, a, b, c некоторые числа, причем a≠0. Обычно его называют полным квадратным уравнением.
Если в таком уравнении один из коэффициентов b или c равен нулю, либо оба одновременно равны нулю, то такое уравнение называется неполным квадратным уравнением.
Неполное квадратное уравнение при b=0: ax2+c=0
Для решения такого вида уравнения надо выполнить перенос коэффициента с в правую часть, затем найти квадрат переменной (делим обе части на одно и то же число), найти два корня уравнения, либо доказать, что корней нет (если х2 равен отрицательному коэффициенту; знаем, что квадрат любого числа равен только положительному числу).
Пример №1. Решить уравнение:
5х2–45=0
Выполним перенос числа –45 в правую часть, изменяя знак на противоположный: 5х2=45; найдем переменную в квадрате, поделив обе части уравнения на 5: х2=9. Видим, что квадрат переменной равен положительному числу, поэтому уравнение имеет два корня, находим их устно, извлекая квадратный корень из числа 9, получим –3 и 3. Оформляем решение уравнения обычным способом:
5х2–45=0
5х2=45
х2=9
Ответ: х=±3 или можно записать ответ так: х1=–3, х2=3 (обычно меньший корень записывают первым).
Пример №2. Решить уравнение:
–6х2–90=0
Выполним решение уже известным способом: –6х2=90. х2=–15 Здесь видим, что квадрат переменной равен отрицательному числу, а это значит, что уравнение не имеет корней. Ответ: нет корней.
Пример №3. Решить уравнение:
х2–100=0
Здесь мы видим в левой части уравнения формулу сокращенного умножения (разность квадратов двух выражений). Поэтому, можем разложить данное выражение на множители, и найти корни уравнения: (х–10)(х+10)=0. Соответственно, вспомним, что произведение двух множителей равно нулю тогда, когда хотя бы один из множителей равен нулю, то есть х–10=0 или х+10=0. Откуда имеем два корня х1=10, х2=–10.
Неполное квадратное уравнение при с=0: ax2+bx=0
Данного вида уравнение решается способом разложения на множители – вынесением за скобки переменной. Данное уравнение всегда имеет два корня, один из которых равен нулю. Рассмотрим данный способ на примерах.
Пример №4. Решить уравнение:
х2+8х=0
Выносим переменную х за скобки: х(х+8)=0. Получаем два уравнения х=0 или х+8=0. Отсюда данное уравнение имеет два корня – это 0 и –8.
Пример №5. Решить уравнение:
3х2–12х=0
Здесь кроме переменной можно вынести за скобки еще и коэффициент 3, который является общим множителем для данных в уравнении коэффициентов. Получим: 3х(х–4)=0. Получаем два уравнения 3х=0 и х–4=0. Соответственно и два корня – нуль и 4.
Неполное квадратное уравнение с коэффициентами b и с равными нулю: ax2=0
Данное уравнение при любых значениях коэффициента а будет иметь один корень, равный нулю.
Пример №6. Решить уравнение:
–14х2=0
Обе части уравнения делим на (–14) и получаем х2=0, откуда соответственно и единственный корень – нуль.
Пример №6. Решить уравнение:
23х2=0
Также делим обе части на 23 и получаем х2=0. Значит, корень уравнения – нуль.
Даниил Романович | Просмотров: 8.7k
Решение квадратных уравнений
6 июля 2011
Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.
Квадратное уравнение — это уравнение вида ax2 + bx + c = 0, где коэффициенты a, b и c — произвольные числа, причем a ≠ 0.
Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:
- Не имеют корней;
- Имеют ровно один корень;
- Имеют два различных корня.
В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант.
Дискриминант
Пусть дано квадратное уравнение ax2 + bx + c = 0. Тогда дискриминант — это просто число D = b2 − 4ac.
Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:
- Если D < 0, корней нет;
- Если D = 0, есть ровно один корень;
- Если D > 0, корней будет два.
Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:
Задача. Сколько корней имеют квадратные уравнения:
- x2 − 8x + 12 = 0;
- 5x2 + 3x + 7 = 0;
- x2 − 6x + 9 = 0.
Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8)2 − 4 · 1 · 12 = 64 − 48 = 16
Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 32 − 4 · 5 · 7 = 9 − 140 = −131.
Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6)2 − 4 · 1 · 9 = 36 − 36 = 0.
Дискриминант равен нулю — корень будет один.
Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.
Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.
Корни квадратного уравнения
Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:
Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.
Задача. Решить квадратные уравнения:
- x2 − 2x − 3 = 0;
- 15 − 2x − x2 = 0;
- x2 + 12x + 36 = 0.
Первое уравнение:
x2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2)2 − 4 · 1 · (−3) = 16.
D > 0 ⇒ уравнение имеет два корня. Найдем их:
Второе уравнение:
15 − 2x − x2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2)2 − 4 · (−1) · 15 = 64.
D > 0 ⇒ уравнение снова имеет два корня. Найдем их
[begin{align} & {{x}_{1}}=frac{2+sqrt{64}}{2cdot left( -1 right)}=-5; \ & {{x}_{2}}=frac{2-sqrt{64}}{2cdot left( -1 right)}=3. \ end{align}]
Наконец, третье уравнение:
x2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 122 − 4 · 1 · 36 = 0.
D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:
[x=frac{-12+sqrt{0}}{2cdot 1}=-6]
Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.
Неполные квадратные уравнения
Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:
- x2 + 9x = 0;
- x2 − 16 = 0.
Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:
Уравнение ax2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.
Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.
Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax2 + c = 0. Немного преобразуем его:
Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c/a) ≥ 0. Вывод:
- Если в неполном квадратном уравнении вида ax2 + c = 0 выполнено неравенство (−c/a) ≥ 0, корней будет два. Формула дана выше;
- Если же (−c/a) < 0, корней нет.
Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c/a) ≥ 0. Достаточно выразить величину x2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.
Теперь разберемся с уравнениями вида ax2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:
Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:
Задача. Решить квадратные уравнения:
- x2 − 7x = 0;
- 5x2 + 30 = 0;
- 4x2 − 9 = 0.
x2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x1 = 0; x2 = −(−7)/1 = 7.
5x2 + 30 = 0 ⇒ 5x2 = −30 ⇒ x2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.
4x2 − 9 = 0 ⇒ 4x2 = 9 ⇒ x2 = 9/4 ⇒ x1 = 3/2 = 1,5; x2 = −1,5.
Смотрите также:
- Теорема Виета
- Следствия из теоремы Виета
- Тест на тему «Значащая часть числа»
- Метод коэффициентов, часть 1
- Однородные тригонометрические уравнения: общая схема решения
- Задача B4: строительные бригады
Содержание:
- § 1 Понятие квадратного уравнения
- § 2 Решение квадратных уравнений
- § 3 Решение квадратного уравнения по формуле с четным вторым коэффициентом
- § 4 Краткие итоги урока
§ 1 Понятие квадратного уравнения
В этом уроке выведем формулы для решения квадратных уравнений с чётным вторым коэффициентом и научимся решать такие квадратные уравнения, используя эти формулы.
Квадратным уравнением называют уравнение вида ax2 + bx +c=0, где a называют первым или старшим коэффициентом, b – вторым коэффициентом или коэффициентом при х, с – свободным членом, х – переменная, причём a ≠ 0.
Чтобы решить квадратное уравнение, необходимо найти дискриминант D по формуле
D = b2 – 4ac
Если в квадратном уравнении коэффициент b- четное число, то это уравнение можно представить в виде ax2 + 2kx + c=0, где b=2k, k – целое число.
§ 2 Решение квадратных уравнений
Выведем формулы для решения квадратного уравнения с четным вторым коэффициентом. Для этого в основную формулу для решения квадратного уравнения вместо второго коэффициента b подставим 2k.
Найдем дискриминант.
D = b2 – 4ac = (2k)2 – 4ac = 4k2 – 4ac.
Вынесем за скобки 4 и получим D = 4(k2 – ac).
Обозначим выражение в скобках за D1. Тогда D1 = k2 – ac, а D = 4D1.
Видно, что число корней уравнения зависит от D1. Если D1 больше нуля, то уравнение имеет два корня.
Разделим числитель и знаменатель на 2. После всех преобразований формула примет вид
Корни х1 и х2 зависят только от знака квадратного корня в числителе, поэтому
А если дискриминант D1 равен нулю? Уравнение будет иметь один корень.
Вместо коэффициента b подставим 2k.
§ 3 Решение квадратного уравнения по формуле с четным вторым коэффициентом
Рассмотрим решение квадратного уравнения 5х2 –16 х + 3 = 0 как по основной формуле, так и по формуле с четным вторым коэффициентом. А затем сделаем некоторые выводы.
Итак, сначала выпишем коэффициенты a = 5, b= –16, с = 3.
Найдем дискриминант D по формуле D = b2 – 4ac.
Подставив в неё значения коэффициентов, получим D= (–16)2 – 4 ∙ 5 ∙ 3 = 196,дискриминант больше нуля D>0, значит, уравнение имеет два корня, используя соответствующие формулы, вычисляем:
Так как коэффициент b= –16 четное число, то можно решить это уравнение по формулам решения квадратного уравнения с четным вторым коэффициентом.
В нашем уравнении 5х2 –16х + 3 = 0, k = –16:2= –8.
Найдем дискриминант D1.
D1 = k2 –ac= (–8)2 – 5 ∙ 3 = 49, он больше нуля D1 >0, уравнение имеет два корня, которые находим по соответствующим формулам:
Заметим, что корни получились одинаковые х1 = 0,2; х2 = 3.
Однако есть преимущества в использовании формул решения квадратного уравнения с четным вторым коэффициентом.
Во-первых, при нахождении дискриминанта в квадрат возводится не число b, не второй коэффициент, а его половина и вычитается из этого квадрата не 4ac, а просто ac
Во-вторых, при нахождении корней в знаменателе не 2a, а просто a.
В-третьих, дискриминант, находимый по формуле с четным вторым коэффициентом, то есть D1, в 4 раза меньше дискриминанта D.
Если квадратное уравнение с четным вторым коэффициентом b=2k и с коэффициентом a= 1, т.е. является приведенным x2 + 2kx +c=0, то решить уравнение можно ещё проще. Находим дискриминант по формуле D1 = k2 – c.
Если он больше нуля D1 >0, то корни находим по формулам:
Если дискриминант равен нулю D1=0, то будет один корень х = –k.
Рассмотрим решение квадратного уравнения х2 +10 х–5600 = 0 как по основной формуле, так и по формуле решения квадратного уравнения с четным вторым коэффициентом, являющееся приведенным.
Выпишем коэффициенты a = 1, b= 10, с = – 5600.
Найдем дискриминант D по формуле D = b2 – 4ac.
D = (10)2 – 4 ∙ 1 ∙ (–5600) = 22500, D > 0, дискриминант положительный, значит, уравнение имеет два корня, используя соответствующие формулы, получим значения корней:
Так как коэффициент b = 10 четное число, то можно решить это уравнение по формуле решения квадратного уравнения с четным вторым коэффициентом. Заметим, что в уравнении коэффициент a=1.
Уравнение является приведенным.
k = 10 : 2 = 5.
Найдем дискриминант D1.
§ 4 Краткие итоги урока
Важно запомнить:
Если квадратное уравнение ax2 + bx + c = 0 с четным вторым коэффициентом, то есть второй коэффициент можно представить в виде b = 2k, k – целое число, то уравнение лучше решить по соответствующим формулам. При решении поступают следующим образом:
1.Находят дискриминант D1 по формуле D1 = k2 – ac. Значение дискриминанта зависит от коэффициентов a, k , с.
2.Сравнивают дискриминант D1 с нулём.
3.Если дискриминант больше нуля, то уравнение ax2 + 2kx +c=0 имеет два корня
Если дискриминант меньше нуля, корней нет.
4.Если квадратное уравнение ax2 + bx + c = 0 с четным вторым коэффициентом и является приведенным x2 + 2kx + c = 0, коэффициенты a= 1, b = 2k, k – целое число, то уравнение решают следующим образом:
1)Находят дискриминант D1 по формуле D1 = k2 – c.
2)Сравнивают дискриминант D1 с нулём.
3)Если дискриминант больше нуля, то уравнение x2 + 2kx +c=0 имеет два корня
Если дискриминант равен нулю, то х = –k.
Если дискриминант меньше нуля, корней нет.
Список использованной литературы:
- Макарычев Ю.Н., Н.Г. Миндюк, Нешков К.И., Суворова С.Б., под редакцией Теляковского С.А. Алгебра: учебник для 8 кл. общеобразоват. учреждений. — М.: Просвещение, 2013.
- Мордкович А.Г. Алгебра. 8 кл.: В двух частях. Ч.1: Учеб. для общеобразоват. учреждений. — М.: Мнемозина.
- Рурукин А.Н. Поурочные разработки по алгебре: 8 класс.- М.: ВАКО, 2010.
- Алгебра 8 класс: поурочные планы по учебнику Ю.Н. Макарычева, Н.Г. Миндюк, К.И. Нешкова, С.Б. Суворовой/ Авт.-сост. Т.Л. Афанасьева, Л.А. Тапилина. – Волгоград: Учитель, 2005.
На чтение 7 мин. Просмотров 8.1k.
Важная характеристика квадратных уравнений — их дискриминант. По значению этой величины определяют, сколько корней у данного уравнения и есть ли они.
В 8 классе по алгебре начинают изучать квадратные уравнения и самый популярный способ их решения — через дискриминант. Формула вычисления дискриминанта известна
Дискриминант в математике используется чтобы определить сколько корней в уравнении — 1 корень, 2 корня или действительных корней нет. В этой статье определим, что такое дискриминант и выведем формулу дискриминанта.
Определение
Определим что такое дискриминант и зачем он нужен в математике, а также как его рассчитать.
Дискриминантом называют число, описывающее свойство коэффициентов квадратного многочлена. Хотя есть дискриминанты и кубических многочленов.
По этому числу определяют характер корней уравнения, полученному если многочлен приравнять к нулю. Так, если дискриминант больше нуля, то уравнение будет иметь два корня, равен нулю, то 1 корень, а если будет меньше нуля, то корней не будет.
Дискриминант (определение) помогает определить наличие или отсутствие корней квадратного уравнения, не решая его.
Обозначается дискриминант квадратного уравнения буквой
или знаком Δ. И находится по формуле:
D=b^2-4ac , где
,
и
— коэффициенты уравнения:
ax^2+bx+c=0
Корни через дискриминант определяются по формулам:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Пример вычисления дискриминанта:
Вычислим дискриминант в уравнении 6x^2+4x+2=0 .
По формуле находим:
D=b^2-4ac=4^2-4cdot 6 cdot 2=16-48=-32
Мы получили отрицательный дискриминант, значит, данное уравнение не имеет действительных корней. Действительно, так как корни квадратного уравнения находят по формулам:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Подставим значения для исходного уравнения:
displaystyle x_1=frac{-4-sqrt{-32}}{12} и displaystyle x_2=frac{-4+sqrt{-32}}{12}
Как видим, мы никак не сможем посчитать корни — у нас отрицательное число под знаком радикала. И, действительно, если вы построите график функции f (x)=6x^2+4x+2 — он нигде не пересечет ось , то есть ни при каком
мы не получим ноль.
Геометрический смысл дискриминанта
Что означает дискриминант на графике, каков его геометрический смысл? Графически дискриминант квадратного уравнения характеризует расстояние по оси абсцисс между точкой — вершиной параболы (парабола — график квадратичной функции) и точкой пересечения графика с осью абсцисс. Посмотрите на рисунок. На нем видно:
- Если дискриминант равен нулю (D=0), это значит, что вершина параболы и является точкой пересечения с осью абсцисс — расстояние между точкой пересечения и вершиной параболы равно нулю.
- Когда D>0, то справа и слева от точки абсцисс вершины параболы на одинаковом расстоянии displaystyle frac{sqrt{D}}{2a} будут находиться точки пересечения параболы ax^2+bx+c=y, которые являются корнями уравнения ax^2+bx+c=0.
- Когда D<0 — это означает, что точек действительных отметить на оси абсцисс нельзя, то есть от вершины отложить расстояние до точек пересечения графика с осью абсцисс невозможно, то есть этих точек пересечения нет. График не пересекает ось абсцисс и корней уравнения [katex]ax^2+bx+c=0[/katex] нет.
Корни квадратного уравнения через дискриминант.
Полное квадратное уравнение
Пусть нам дано уравнение вида ax^2+bx+c=0. Вычисляем дискриминант по известной формуле. Затем определяем корни уравнения.
- Если D>0 получаем два вещественных корня displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.
- Если D=0 корни будут совпадать: displaystyle x_1=x_2=frac{-b}{2a}
- Если D<0, вещественных корней нет, но есть мнимые корни или так называемые комплексные корни (обычно изучаются в курсе математического анализа в ВУЗах, хотя иногда и встречаются в алгебре 9-11 классов).
Неполное квадратное уравнение
Неполным называется такое квадратное уравнение, когда один из коэффициентов такого уравнения равен нулю.
- Пусть коэффициент a=0, тогда уравнение сводится к линейному уравнению вида kx+b=0 и уже не будет считаться неполным.
- Если равны нулю два коэффициента:
и
, тогда
. Решением такого уравнения будет:
.
- Если равен нулю коэффициент b, то имеем D=-4ac и displaystyle x_1= frac{sqrt{D}}{2a} и displaystyle x_2= -frac{sqrt{D}}{2a}.
- При равенстве нулю свободного члена c=0 имеем D=b^2 и displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}.
Приведенное квадратное уравнение
Приведенным квадратным уравнением называется такое уравнение вида , в котором старший коэффициент равен a=1. Оно решается обычно по теореме Виета.
Дискриминант находится по формуле: .
Если второй коэффициент кратен 2
Если коэффициент b можно разделить на 2 (с четным вторым коэффициентом), то тогда вычисляется не полный дискриминант, а displaystyle frac{D}{4} по формуле:
displaystyle frac{D}{4}=left ( frac{b}{2} right)^2-ac,
а корни: displaystyle x_1=frac{-frac{b}{2}-sqrt{frac{D}{4}}}{a} и второй корень displaystyle x_2=frac{-frac{b}{2}+sqrt{frac{D}{4}}}{a}.
Примеры нахождения корней уравнения с помощью дискриминанта
Пример 1
Решим уравнение: 4x^2+5x-5=0
Находим дискриминант: D=25-4 cdot 4 cdot (-5)=25+80=105
Корни: displaystyle x_1=frac{-5-sqrt{105}}{2cdot 4}, displaystyle x_2=frac{-5+sqrt{105}}{2cdot 4}
или
displaystyle x_1=frac{-5-sqrt{105}}{8}, displaystyle x_2=frac{-5+sqrt{105}}{8}
Пример 2
Сколько корней в данном уравнении 2x^2-3x+6=0?
Для ответа на этот вопрос необходимо найти дискриминант:
D=3^2-4 cdot 2 cdot 6=9-48=-39
D<0[/katex] — действительных корней нет.</p> <h3>Пример 3</h3> <p>[katex]x^2-6x-72=0 — найти корень.
D=b^2-4ac=(-6)^2-4 cdot (-72)=36+288=324
Так как , имеем два корня:
displaystyle x_1=frac{6-sqrt{324}}{2}, x_2=frac{6+sqrt{324}}{2}
displaystyle x_1=frac{6-18}{2}=-6, x_2=frac{6+18}{2}=12
Пример 4
Решить неполное уравнение
x^2-4=0
Способ 1
Разложим левую часть по формуле разность квадратов:
(x-2)(x+2)=0
Тогда корни:
x_1=-2, x_2=2
Способ 2
Решим задачу с помощью дискриминанта: , тогда displaystyle x_1=sqrt{D}/2=sqrt{16}/2=4/2=2,
displaystyle x_2=-sqrt{D}/2=-sqrt{16}/2=-4/2=-2
Пример 5
Придумайте такое квадратное уравнение, в котором будет нулевой дискриминант.
Решение:
Так как формула дискриминанта: D=b^2-4ac, то выберем любые коэффициенты и
, а
найдем, если приравняем D=b^2-4ac к нулю.
Пусть , a
, тогда displaystyle D=4^2-4cdot 7cdot c=0
4^2-4cdot 7cdot c=0
16-28c=0
-28c=-16 Разделим левую и правую части на -4.
7c=4
displaystyle c=frac{4}{7}
И, получаем: displaystyle 7x^2+4x+frac{4}{7}=0
Ответ: displaystyle 7x^2+4x+frac{4}{7}=0
Выводы
Самое важное, что надо запомнить, это формулу:
D=b^2-4ac
и как определяются корни квадратного уравнения:
displaystyle x_1=frac{-b-sqrt{D}}{2a} и displaystyle x_2=frac{-b+sqrt{D}}{2a}
Можно забыть, как определяются корни в разных видах квадратных уравнений, неполных, приведенных, но если вы знаете главное — как определяется дискриминант и корни в полном квадратном уравнении, то вы сможете решить любое уравнение второй степени.