Новости астрономии 2020
Гостевая книга
Формулы для расчёта телескопа
Кратность или увеличение телескопа (Г)
Г=F/f, где F — фокусное расстояние объектива, f — фокусное расстояние окуляра.
F вы изменить чаще всего не можете, но имея окуляры с разным f, вы сможете менять кратность или увеличение телескопа Г.
Максимальное увеличение (Г max)
Максимальное увеличение телескопа ограничено диаметром объектива.
Принято считать, что Г max=2*D, но из-за поправок на искажения, точности изготовления и настройки, лучше немного занизить эту величину:
Гmax = 1,5*D, где D — диаметр объектива или главного зеркала (апертура).
А если труба окажется способна на большее — пусть это лучше сюрпризом будет, чем наоборот…
Используя линзу Барлоу, можно поднять максимальное увеличение телескопа в разы, но в итоге вы получите всего-лишь размытое пятно больших размеров и никаких дополнительных деталей.
Есть, правда, другой подход: немного более крупные размеры часто позволяют лучше расмотреть тот же объект,
несмотря на то, что деталей на нём не прибавится. Наверное поэтому и советуют обычную формулу: Г max=2*D. То есть, это зависит от объекта и вашего вкуса…
Светосила
Светосила телескопа определяется в виде отношения D:F.
Если не особо заморачиваться, то чем меньше это отношение, тем лучше телескоп подходит для наблюдения галактик и туманностей (например 1:5).
А более длиннофокусный телескоп с соотношением вроде 1:12 лучше подходит для наблюдения Луны.
Разрешающая способность (b)
Разрешающая способность телескопа — наименьший угол между такими двумя близкими звездами, когда они уже видны как две, а не сливаются зрительно в одну.
Проще говоря, под разрешающей способностью можно понимать «чёткость» изображения (да простят меня профессионалы-оптики…).
b=138/D, где D — апертура объектива. Измеряется в секундах (точнее в секундах дуги).
Из-за атмосферы эта величина нечасто бывает меньше 1″ (1 секунды). Например, на Луне 1″ соответствует кратеру диаметром около 2 км.
Для длиннофокусных объективов, со значением светосилы 1:12 и более длинных, формула немного другая: b=116/D (по Данлопу).
Из сказанного выше видно, что в обычных условиях минимальная разрешающая способность в 1″ достигается при апертуре 150мм у рефлекторов
и около 125мм у планетников-рефракторов.
Более апертуристые телескопы дают более чёткое изображение только в теории, ну или высоко в горах, где чистая атмосфера,
либо в те редкие дни, когда «с погодой везёт»…
Однако, не забывайте, что чем больше телескоп, тем ярче изображение, тем виднее более тусклые детали и объекты.
Поэтому, с точки зрения обычного наблюдателя, изображение у больших телескопов всё равно оказывается лучше, чем у маленьких.
Вдобавок, в короткие промежутки времени атмосфера над вами может успокоиться настолько,
что большой телескоп покажет картинку более чёткую, чем при том самом пределе в 1″,
а вот маленький телескоп упрётся в это ограничение и будет очень обидно…
Так что, нет особого смысла ограничиваться 150-ю миллиметрами
Предельная звёздная величина (m)
Предельная звёздная величина, которая видна в телескоп, в зависимости от апертуры:
m=2.1+5*lg(D), где D – диаметр телескопа в мм., lg — логарифм.
Если возьмётесь расчитывать, то увидите, что предельная звёздная величина,
доступная нашему глазу через самый большой «магазинный» телескоп с апертурой 300мм — около 14,5m.
Более слабые объекты ищутся через фотографирование и последующую компьютерную обработку кадров.
Приведу для справки таблицу соответствия апертуры телескопа D и предельной звёздной величины:
D, мм | m | D, мм | m | |
---|---|---|---|---|
32 | 9,6 | 132 | 12.7 | |
50 | 10,6 | 150 | 13 | |
60 | 11 | 200 | 13,6 | |
70 | 11,3 | 250 | 14,1 | |
80 | 11,6 | 300 | 14,5 | |
90 | 11,9 | 350 | 14,8 | |
114 | 12,4 | 400 | 15,1 | |
125 | 12,6 | 500 | 15,6 |
На деле значения будут немного отличаться из-за разницы световых потерь в разных конструкция телескопов.
При одинаковой апертуре D, выше всего предельная звёздная величина в линзовых телекопах-рефракторах.
В зеркальных рефлекторах потери выше — очень грубо можно отнять 10-15%.
В катадиопртиках потери самые большие, соответственно и предельная звёздная величина самая маленькая.
Также велики потери в биноклях из-за наличия нескольких преломляющих призм — их я имел ввиду, дав диаметры 32 и 50 мм.
То есть, в биноклях предельная звёздная величина будет гораздо меньше табличной. На сколько — зависит от качества марки бинокля, в частности от качества просветляющего покрытия всех поверхностей — это нельзя предсказать для всех моделей.
Сложные и дорогие окуляры тоже задерживают свет за счёт большего количества линз — неизбежная плата за качество изображения
(хотя, их качественные просветляющие покрытия частично снижают этот недостаток).
То есть, при одинаковой апертуре, в линзовый телескоп-рефрактор с самым простеньким окуляром вы увидите максимум возможного при данном D.
Но, поскольку, рефракторы больших диаметров дороги, то за те же деньги можно взять гораздо более апертуристый рефлектор и увидеть значительно больше.
Выходной зрачок
Выходной зрачок телескопа = D/Г
Хорошо, когда выходной зрачок телескопа равен 6 мм., это значит, что весь свет собираемый объективом попадёт в глаз (6 мм. — примерный диаметр человеческого зрачка в темноте).
Если выходной зрачок окажется больше, то часть света потеряется, подобно тому, как если бы мы задиафрагмировали объектив.
На деле удобнее считать «от обратного». Например:
Для моего телескопа с апертурой D=250мм, максимальное увеличение без потери яркости = 250мм/6мм = 41,67 крат. То есть, при увеличении 41,67 выходной зрачок будет равен 6 мм.
Ну, и какой окуляр мне нужен для этого телескопа, чтобы получить это самое «равнозрачковое увеличение»?
Вспоминаем: f=F/Г.
Тогда: фокусное расстояние F моего Добсона»: 1255мм. «Г» уже нашли: 41,67 крат.
Получается, что мне нужен окуляр f=1255/41,67=30,1мм. Да, примерно такой окуляр и шёл в комплекте :)…
42 крата — это совсем немного, но достаточно для рассматривания звёздных полей, а вот уже для Андромеды маловато…
(Берём окуляр с фокусом покороче. Ура, получается крупнее! Но… темнее. И чем больше кратность, тем темнее будет картинка.)
Это был расчёт для довольно апертуристого телескопа, а какая будет кратность для равнозрачковости в рядовые телескопы — посчитайте сами: одни слёзы… Поэтому и говорят, что «апертура рулит» — чем она выше, там картинка ярче при одинаковой кратности (при одинаковой конструкции телескопов).
Поле зрения телескопа
Поле зрения телескопа = поле зрения окуляра / Г
Поле зрения окуляра указано в его паспорте, а увеличение Г телескопа с данным окуляром мы уже знаем как расчитать: Г=F/f.
Чем полезно знание поля зрения телескопа?
Чем больше поле зрения телескопа, тем больший кусок неба виден, но тем мельче объекты.
Зная какое поле (угол) захватит ваш телескоп при заданном увеличении, и зная уговые размеры искомого объекта, можно прикинуть какую часть поля зрения займёт этот объект,
то есть прикинуть общий вид того, что вы увидите в окуляре.
Если вы ищете объект не по координатам, а по картам, то полезно сделать из проволоки колечки, которые соответствуют на карте угловым полям зрения ваших окуляров в составе данного телескопа.
Тогда гораздо легче ориентироваться: двигая телескоп от звезды к звезде и одновременно перемещая колечко на карте, вы легко можете сверять оба изображения.
Теперь, когда примерно ясна взаимосвязь характеристик телескопа, можно другими глазами посмотреть на то,
что можно увидеть в телескопы разных размеров.
Начинающему астроному
или расскажите друзьям:
Помогите подобрать прибор под задачу. Лампа накаливания в помещении олеблется под действием акустической речевой волны. Амплитуда колебаний на частоте 600 Гц спектрального ядра речи составляет 100 мкм. С какими параметрами нужен телескоп для того, чтобы увидеть колебания с расстояния 10 м извне помещения через окно
Как решить эту задачу,не понимаю.
Фотоаппаратом с фокусным расстоянием объектива 9 см фотографировали далекие предметы на максимально близком для данного аппарата расстоянии 81 см. Определить, на сколько при этом пришлось выдвинуть вперед объектив.
Как определить (по какой формуле) диапазон телескопа, если он необходим для наблюдения за звездами с атмосферной температурой, например, 10000:К?
В тексте ошибка: «Г max=1,5*D, где D — фокусное расстояние объектива». Думаю должно быть: D — апертура объектива или главного зеркала.
А мой телескоп наверное самый такой простой…Levenhuk Skyline 76*700AZ очень обидно то,что я могу посмотреть только окружность звезды я середина её тёмная. почему?ответьте если можно…
Вы пишете в статье: «6 мм. — примерный диаметр человеческого зрачка в темноте». Но, я встречала упоминания, что в темноте зрачок у нас 8 мм. Так сколько же на самом деле?
Большое спасибо за статью и другие статьи вашего сайта, очень понятно и подробно, спасибо!!!
Замечательная статья. Благодарю. Celestron 120/1000 OMNI
Очень интересно и подробно всё описано. Для меня это очень нужная статья, т.к. недавно начал заниматься астрономией. Мой телескоп: Sturman HQ1400150EQ. Спасибо вам большое!
Ответ:
Пожалуйста У вас аппертура 150 мм и экваториальная монтировка — хорошее начало для дипская. Главное чтобы место наблюдения было без сильной засветки. Успехов!
Николай.
При перепечатке материалов с этого сайта, ссылка на kosmoved.ru обязательна.
© Copyright 2014-2020, kosmoved.ru
Контакты: info@kosmoved.ru
вапорыпрваы
Главные части в телескопе — объектив и окуляр. Объектив направляют в сторону объекта, который хотят наблюдать, а в окуляр смотрят глазом.
Существует три основных типа оптических систем телескопов – рефрактор (с линзовым объективом), рефлектор (с зеркальным объективом) и зеркально-линзовый телескоп.
Телескоп-рефрактор имеет в качестве объектива линзу в передней части трубы. Чем больше диаметр линзы, тем ярче кажется небесный объект в поле зрения, тем более слабый объект можно заметить в этот телескоп. Как правило, объектив рефрактора представляет собой не одиночную линзу, а систему линз. Они изготовляются из разных сортов стекла и склеиваются между собой специальным клеем. Это делается для того, чтобы уменьшить искажения в изображении. Эти искажения называются аберрациями. Аберрациями обладает любая линза. Главные из них – сферическая аберрация и хроматическая аберрация.
Сферическая аберрация заключается в том, что края линзы сильнее отклоняют световые лучи, чем середина. Иными словами, лучи света, пройдя через линзу, не сходятся в одном месте. А нам очень важно, чтобы лучи сходились в одной точке. Ведь от этого зависит чёткость изображения. Но это еще полбеды. Ты знаешь, что белый свет является составным – в него входят лучи всех цветов радуги. В этом легко убедиться с помощью стеклянной призмы. Направим на неё узкий луч белого света. Мы увидим, что белый луч, во-первых, разложится на несколько цветных лучей, и, во-вторых преломится, т.е. изменит направление. Но самое важное то, что лучи разного цвета преломляются по-разному – красные отклоняются меньше, а синие – больше. Линза тоже своего рода призма. И она неодинаково фокусирует лучи разных цветов – синие собираются в точку ближе к линзе, красные – дальше от неё.
Изображение, даваемое линзой, всегда слегка окрашено по краям радужной каймой. Так проявляет себя хроматическая аберрация.
Чтобы уменьшить сферическую и хроматическую аберрации, средневековые астрономы придумали делать линзы с очень большим фокусным расстоянием. Фокусное расстояние – это расстояние от центра линзы до фокуса, т.е. точки, где происходит пересечение преломленных лучей света (на самом деле в фокусе получается крошечное изображение предмета). Задача объектива — собрать побольше света от небесного объекта и построить крошечное и чёткое изображение этого предмета в фокусе.
Польский астроном XVII века Ян Гевелий изготавливал телескопы длиной 50 метров. Зачем? Чтобы не так сильно сказывались аберрации, т.е. чтобы получить возможно более чёткое и неокрашенное изображение небесного объекта. Конечно, работать с таким рефрактором было очень неудобно. Поэтому Гевелий, хотя и был трудолюбивым астрономом, многого не смог открыть.
Впоследствии оптики придумали делать объектив не из одной, а из двух линз. Причём так подбирали сорта стекол и кривизну их поверхностей, что аберрации одной линзы гасили, компенсировали аберрации другой линзы.
Так появился сложный объектив. Рефракторы сразу уменьшились в размерах. Зачем делать длинный телескоп, если качественный объектив можно сделать более короткофокусным? Именно поэтому в детских телескопах такое плохое изображение – ведь там используется в качестве объектива всего одна линза. А нужно минимум две. Одна линза стоит дешевле, чем две, поэтому детские телескопы так дешевы. Но всё-таки, какие бы стёкла оптики ни подбирали для объективов, совсем избежать хроматической аберрации не удаётся. Поэтому в рефракторах всегда есть небольшой синий ореол вокруг изображения. Однако в целом, рефракторы среди телескопов других систем дают самое чёткое изображение.
Ты должен остановить свой выбор на рефракторе, если собираешься наблюдать подробности небесных объектов – горы и кратеры на Луне, полосы и Большое Красное Пятно на Юпитере, кольца Сатурна, двойные звёзды, шаровые звёздные скопления и т.п. Бледные, размытые объекты – туманности, галактики, кометы – нужно наблюдать в телескоп-рефлектор.
В рефлекторе свет собирается не линзой, а вогнутым зеркалом определённой кривизны. Зеркало изготовить проще, чем линзу, потому что приходится шлифовать только одну поверхность. К тому же, для линз нужно особое качественное стекло, а для зеркал подходит любое стекло. Поэтому рефлекторы в целом стоят дешевле рефракторов с таким же диаметром линзы. Многие любители астрономии сами строят неплохие рефлекторы. Главное преимущество рефлектора в том, что зеркало не даёт хроматической аберрации. Первый в истории рефлектор создал Исаак Ньютон в XVIII веке. Этот английский учёный первым заметил, что вогнутое зеркало одинаково отражает лучи всех цветов и может создавать неокрашенное изображение. Ньютон разработал оптическую систему телескопа, которую принято называть Ньютоновской. Рефлекторы системы Ньютона изготовляются сегодня промышленным способом во многих странах мира.
Самый большой рефлектор системы Ньютона в XVIII веке построил английский астроном Вильям Гершель. Диаметр вогнутого зеркала был 122 см, а длина трубы телескопа – 12 метров. Конечно, телескоп неуклюжий, но всё-таки это уже не 50-метровый рефрактор Гевелия. Со своим телескопом Гершель совершил много замечательных открытий. Одно из самых важных – открытие планеты Уран.
Посмотрим на ход лучей в системе рефрактора и рефлектора.
В рефракторе свет проходит через линзу и непосредственно попадает в окуляр и дальше в глаз наблюдателя. В рефлекторе свет отражается от вогнутого зеркала и направляется сначала на плоское зеркало, установленное в верхней части трубы, и только потом попадает в окуляр и глаз. В рефлекторе, таким образом, работает два зеркала – одно вогнутое (главное), другое плоское (диагональное). Задача главного зеркала такая же, как у линзового объектива — собирать свет и строить крошечное и чёткое изображение в фокусе.
Плоское (диагональное) зеркало держится на специальных растяжках (как правило, их 4 штуки) в передней части трубы. А теперь представь: свет попадает в трубу телескопа, часть света загораживает плоское зеркало и растяжки. В результате на главное вогнутое зеркало попадает меньше света, чем могло попасть. Это называется центральным экранированием. Центральное экранирование приводит к потере чёткости изображения.
Поэтому рефлекторы нельзя рекомендовать для изучения небесных объектов с мелкими деталями. Рефлекторы используются для наблюдения размытых и бледных объектов – комет, туманностей, галактик.
Наконец, познакомимся с зеркально-линзовыми телескопами. Они сочетают в себе элементы и рефрактора и рефлектора. Там есть и вогнутое зеркало, и линза в передней части трубы. Как правило, задняя часть этой линзы посеребрена. Этот серебристый кружок играет роль дополнительного зеркала. Ход световых лучей в зеркально-линзовых телескопах сложнее. Свет проходит через переднюю линзу, затем попадает на вогнутое зеркало, отражается от него, идёт обратно к передней линзе, отражается от серебристого кружка, идёт обратно к вогнутому зеркалу и проходит сквозь отверстие в этом зеркале. И только после этого свет попадает в окуляр и глаз наблюдателя. Световой поток внутри трубы три раза меняет направление. Поэтому зеркально-линзовые телескопы так компактны. Если у тебя мало места на балконе, то свой выбор нужно остановить именно на таком телескопе.
Существует несколько оптических систем зеркально-линзовых телескопов. Например, телескоп системы Максутова, Шмидта, Кассегрена, Клевцова. Каждый из этих оптиков по-своему решает основные недостатки зеркально-линзового телескопа. Что же это за недостатки? Во-первых, много оптических поверхностей. Давай посчитаем: как минимум 6, и на каждой из них теряется часть света (к сведению, в рефракторе и рефлекторе их по 4). Внутри такого телескопа теряется много света. Если рефрактор способен пропускать 92% попадающего в него света от небесного объекта, то через зеркально-линзовый телескоп проходит только 55% света. Иными словами, объекты в такой телескоп выглядят более тусклыми по сравнению с рефрактором с таким же диаметром объектива. Поэтому зеркально-линзовые телескопы лучше использовать для ярких объектов – Луны и планет. Но, учитывая центральное экранирование из-за зеркала на передней линзе, приходится признать, что чёткость изображения также ниже, чем в рефракторе. Во-вторых, и линза, и вогнутое зеркало создают свои аберрации. Поэтому качественный зеркально-линзовый телескоп стоит довольно дорого.
Увеличение телескопа. Чтобы найти увеличение телескопа, нужно фокусное расстояние объектива разделить на фокусное расстояние окуляра. Например, объектив имеет фокусное расстояние 1 м (1 000 мм), при этом у нас в распоряжении три окуляра с фокусными расстояниями 5 см (50 мм), 2 см (20 мм) и 1 см (10 мм). Меняя эти окуляры, мы получим три увеличения:
Обрати внимание, если мы берём фокусное расстояние объектива в мм, то и фокусное расстояние окуляра тоже в мм.
Казалось бы, если брать всё более короткофокусные окуляры, то можно получать всё большие увеличения. Например, окуляр с фокусным расстоянием 1 мм дал бы с нашим объективом увеличение 1 000 крат. Однако изготовить такой окуляр с высокой точностью очень сложно, да и нет необходимости. При наземных наблюдениях использовать увеличение более 500 крат не удаётся из-за атмосферных помех. Даже если поставить увеличение в 500 крат, атмосферные течения так сильно портят изображение, что на нём нельзя рассмотреть ничего нового. Как правило, наблюдения проводят с увеличением максимум 200-300 крат.
Несмотря на применение больших увеличений, звёзды в телескоп всё равно выглядят точками. Причина — колоссальная удалённость звёзд от Земли. Однако, телескоп позволяет увидеть невидимые глазом звёзды, т.к. собирает больше света, чем человеческий глаз. Звёзды в телескоп выглядят ярче, у них лучше различаются оттенки, а также сильнее заметно мерцание, вызываемое земной атмосферой.
Максимальное и минимальное полезные увеличения телескопа. Одно из назначений телескопа в том, чтобы собрать побольше света от небесного объекта. Чем больше света пройдёт через объектив телескопа, тем ярче будет выглядеть объект в поле зрения. Это особенно важно при наблюдении туманных объектов — туманностей, галактик, комет. При этом нужно, чтобы весь собранный свет попал в глаз наблюдателя.
Максимальный диаметр зрачка человеческого глаза 6 мм. Если выходящий из окуляра световой пучок (т.н. выходной зрачок) будет шире 6 мм, значит, часть света в глаз не попадёт. Следовательно, нужно использовать такой окуляр, который даёт выходной зрачок не шире 6 мм. При этом телескоп даст минимальное полезное увеличение. Его рассчитывают так: диаметр объектива (в мм) делят на 6 мм. Например, если диаметр объектива 120 мм, то минимальное полезное увеличение будет 20 крат. Ещё меньшее увеличение на этом телескопе использовать нерационально, так как выходной зрачок будет больше 6 мм.
Запомни закономерность: чем меньше увеличение телескопа, тем больше выходной зрачок (и наоборот).
Минимальное полезное увеличение телескопа ещё называют равнозрачковым, потому что выходной зрачок окуляра совпадает с максимальным диаметром зрачка человека — 6 мм.
Чтобы найти максимальное полезное увеличение телескопа, нужно диаметр объектива (в мм) умножить на 1,5. Если диаметр объектива 120 мм, то получим максимальное полезное увеличение 180 крат. Большее увеличение на этом телескопе получить можно, но это будет бесполезно, т.к. новых деталей выявить не удастся из-за появления дифракционных картин. При наблюдении двойных звёзд иногда используют увеличение, численно равное удвоенному диаметру объектива (в мм).
Таким образом, на телескопе с диаметром объектива 120 мм имеет смысл использовать увеличения от 20 до 180 крат.
Существует т.н. проницающее увеличение. Считают, что при его использовании достигается наилучшее проницание — становятся видны самые слабые звёзды, доступные для данного телескопа. Проницающее увеличение используют для наблюдения звёздных скоплений и спутников планет. Чтобы его найти, нужно диаметр объектива (в мм) разделить на 0,7.
В телескопах совместно с окуляром иногда применяют т.н. линзу Барлоу, представляющую собой рассеивающую линзу. Если линза Барлоу двухкратная (2х), то она как бы увеличивает фокусное расстояние объектива в 2 раза (3-кратная линза Барлоу — в 3 раза). Если, например, у объектива фокусное расстояние равно 1 000 мм, то с использованием 2-кратной линзы Барлоу и окуляра с фокусным рассоянием 10 мм мы получим увеличение 200 крат. Таким образом, линза Барлоу служит для повышения увеличения. Конечно, эта линза вносит в общую картину свои аберрации, поэтому при выявлении мелких деталей на Луне, Солнце, планетах от этой линзы лучше отказаться.
Подробнее смотри здесь.
Телескоп, оборудованный для фотографии небесных объектов, называется астрографом. В нём вместо окуляра используется приёмник излучения (раньше это была фотопластинка, фотоплёнка, сегодня — приборы с зарядовой связью). Светочувствительный элемент приёмника излучения располагается в фокусе объектива, так что крошечное изображение предмета запечатлевается. Сегодня астрограф непременно используется в сочетании с компьютером.
Апертура — диаметр объектива телескопа (главного зеркала или линзы), который измеряется в дюймах или миллиметрах. Первый вопрос, который задает новичок, желающий приобрести телескоп — «а какое у него увеличение?», что в корне не верно. Вы удивитесь, когда узнаете, что в любительской астрономии диапазон оптимальных увеличений лежит в пределах 50-150х. Крайне редко удается использовать увеличение 250-300х, и только по наиболее ярким объектам — Луна и планеты. А вот на что действительно стоит обратить внимание, так это на апертуру. Именно от диаметра объектива зависит количество света, которое способен собрать телескоп, способность показать тонкие детали объектов, а также минимальное и максимальное полезное увеличение телескопа. Строго говоря, чем больше апертура, тем более тусклые объекты будут доступны наблюдателю и больше деталей в объектах покажет телескоп.
Фокусное расстояние — расстояние, на котором линзы объектива (главное зеркало) строят изображение бесконечно удаленного объекта. Зная фокусные расстояния телескопа и окуляра, можно вычислить увеличение телескопа. Для этого фокусное расстояние телескопа следует разделить на фокусное расстояние окуляра.
Обратите внимание, что на телескопах с коротким фокусным расстоянием намного тяжелее получить большое увеличение. Это легко увидеть, если взять 2 телескопа с одинаковой апертурой, но разным фокусным расстоянием — например, 1200 мм и 500 мм. В первом случае, для достижения увеличения 200х нам потребуется окуляр с фокусным расстоянием 6мм, а во втором — 2.5 мм. Как правило, столь короткофокусные окуляры обладают серьезным недостатком — малым выносом зрачка, что доставляет определенные неудобства для наблюдателя, заставляя держать глаз слишком близко к глазной линзе окуляра.
Относительное отверстие — это отношение диаметра объектива к его фокусному расстоянию.
Т.е., телескоп с диаметром 200 мм (8 дюймов) и фокусным расстоянием 1200 мм имеет относительное отверстие равное 1/6, а телескоп с объективом 100 мм и фокусом 1000 мм — 1/10.
Принято считать, что телескоп с отверстием 1/6 или больше — быстрый телескоп, при 1/6-1/9 — средний, и медленный при относительном отверстии меньше 1/9.
Такое обозначение (быстрый, средний, медленный) пришло из астрофотографии, где для получения аналогичного результата более быстрый объектив позволяет значительно сократить время экспозиции, хотя для визуальных наблюдений это не имеет никакого значения. Не стоит забывать, что при одинаковой апертуре классические телескопы (рефлектор Ньютона или рефрактор) с меньшим относительным отверстием будут иметь более длинную трубу, что в итоге повлечет за собой увеличение массогабаритных составляющих телескопа. Такие телескопы тяжело транспортировать, с ними труднее наблюдать, и они требуют более дорогих монтировок. Поэтому при прочих равных условиях предпочтительнее покупать телескоп с большим относительным отверстием.
Но, к сожалению, такие телескопы намного труднее изготовить: требуется сложное оборудование и высокая квалификация мастера, что в конечном итоге сказывается на цене. Также «быстрые» телескопы капризны по отношению к окулярам. Практически любой современный широкоугольный окуляр дает хорошее качество изображения со средними и медленными телескопами, когда как для быстрых телескопов аналогичное по качеству изображение удается получить, используя более сложные (класса «премиум»), а, значит, и дорогие окуляры.
С точки зрения производственного процесса, телескопы можно разделить на два класса: серийные, т.е. выпускаемые на заводе большими партиями, и премиум — штучное производство, осуществляемое мелкими фирмами (но с большим именем), и часто под заказ.
Любое массовое производство основано на поточном методе, который призван уменьшить конечную стоимость изделия, что, безусловно, сказывается на его качестве не в лучшую сторону. Напротив, штучное производство позволяет более строго контролировать процесс изготовления и добиться максимально возможного качества изделия, что, к сожалению, значительно (в несколько раз) увеличивает его стоимость.
Покупая телескопы премиум-класса, можно быть уверенным в качестве изготовления, тогда как при серийном производстве качество варьируется от образца к образцу и может быть как плохим, так и превосходным.
На сегодняшний день основная масса серийных телескопов под мировыми брендами изготавливается на фабриках в Китае. Многие потенциальные покупатели, только услышав «Китай», опрометчиво шарахаются в сторону. Ради справедливости стоит отметить — многие телескопы, выпущенные в поднебесной, имеют вполне приличное качество, а некоторые модели зарекомендовали себя с очень хорошей стороны. Однако остается приличный шанс нарваться на откровенный брак, вне зависимости от стоимости телескопа и его позиционирования производителем. Стоит обратить внимание, что полностью раскрыть потенциал даже самой качественной оптики возможно только при очень хороших атмосферных условиях, которые, к сожалению, бывают не часто. Плохое состояние атмосферы зачастую сводит на нет всё преимущество премиальных телескопов, но в те редкие моменты, когда атмосфера успокаивается, такой телескоп многократно оправдывает вложенные в него средства.
Для получения качественного изображения перед началом наблюдений любой телескоп следует привести в температурное равновесие с окружающей средой — термостабилизировать. Изображение в «неостывшем» телескопе испорчено различными дефектами, самый распространенный из которых — дрожание изображения, вызванное перемещением теплого воздуха внутри трубы. Сколько времени требуется для полной термостабилизации? В каждом случае по-разному, так как сказывается влияние различных факторов: от разницы температур (телескопа и окружающей среды) до конкретных особенностей телескопа. При прочих равных, время термостабилизации растет с увеличением диаметра объектива, а также меняется в зависимости от оптической системы телескопа. Небольшие рефракторы (с апертурой 60-70 мм ) зачастую готовы к наблюдениям сразу после выноса на наблюдательную площадку, в то время, как Шмидт-Кассегренам с диаметром объектива 200 мм для этого требуется пара часов.
Неотъемлемая часть любого телескопа — монтировка. В самом простом случае это штатив, на котором установлена труба. Покупая первый телескоп, многие совершенно не уделяют внимания выбору подходящей монтировки, а ведь от ее качества напрямую зависят результаты ваших путешествий по звездному небу. Неудачная монтировка, как и плохое качество оптики, способна отбить желание заниматься астрономией. Нет ничего хуже, чем созерцать в окуляре постоянно трясущееся изображение планеты или галактики, когда сама труба раскачивается из стороны в сторону, как свеча на ветру.
Существует два класса монтировок — альт-азимутальные (Alt-Az) и экваториальные (EQ).
Альт-азимутальные монтировки способны вращать трубу телескопа в двух плоскостях — горизонтальной и вертикальной, как дуло танка, что весьма удобно для начинающего астронома. Эти монтировки не требуют предварительной настройки, как правило, мало весят и интуитивно понятны. Главные недостатки — достаточно тяжело удерживать звезду в поле зрения окуляра, так как приходится перемещать трубу одновременно в двух плоскостях ,и практическая непригодность для наблюдения объектов, располагающихся в зените.
Телескоп на альт-азимутальной alt-az монтировке
Экваториальная монтировка лишена этих недостатков: для слежения за звездой достаточно вращать трубу вдоль всего лишь одной оси, которая выставлена параллельно оси мира. EQ-монтировки — сложные в изготовлении, достаточно громоздкие и тяжелые, плюс ко всему, требуют точной настройки на полюс мира, что не редко вызывает сложность даже у опытных наблюдателей. Снабженные двигателями по одной или двум осям, такие монтировки позволяют проводить фотографические наблюдения и получать превосходные снимки сокровищ ночного неба. Однако, стоит предупредить, что дешевые EQ-монтировки совершенно не пригодны для астрофотографии, несмотря на заверения производителя. Это всего лишь рекламный ход. Безусловно, на таких монтировках можно получить какие-то фотографии, но, скорее всего, они не оправдают ваших ожиданий.
Телескоп на экваториальной (EQ) монтировке
В последние годы широкое распространение получили монтировки с автоматическим наведением — Go-To. Идея, заложенная в Go-To, достаточно проста: «теперь любой человек, обладающий минимальными познаниями в астрономии, способен провести наблюдения». Ведь достаточно указать цель, и телескоп сам наведётся на выбранный объект и будет удерживать его в поле зрения окуляра. Не правда ли заманчивое предложение??? Однако, любители астрономии разделились на два лагеря — одни поддерживают идею автоматического наведения и с удовольствием используют Go-To, другие считают, что автомат убивает весь романтизм и удовольствие от наблюдений, а также не способствует развитию наблюдательных навыков у новичков.
Вероятно, истина, как всегда, лежит где-то посередине.
За многовековую историю телескопостроения различными конструкторами было предложено достаточно большое количество оптических схем. Некоторые их них получили распространение и прославили своих авторов, а некоторые так и остались на бумаге. В конечном счете, на данный момент существует 3 основных типа телескопов:
Рефракторы— имеют объектив, состоящий из линз;
Рефлекторы — изготовлены с использованием зеркал;
Катадиоптрики — комбинированные телескопы, состоящие из зеркал и линз.
У каждого из них есть свои плюсы и минусы, о чем и пойдет речь ниже.
Принципиальная схема трех наиболее распространенных типов телескопов:
Рефрактор, Рефлектор Ньютона и Катадиоптрик Шмидт-Кассегрен (ШК)
Рефрактор — первый телескоп, направленный человеком на небо. За свою практически 400-летнюю историю рефрактор остается одним из самых востребованных телескопов в астрономии.
Сегодня основным недостатком линзового телескопа считается хроматическая аберрация (а классические рефракторы страдали и другими аберрациями), которая проявляется в виде цветной каймы вокруг предметов, что не только мешает эстетическому восприятию изображения, но и значительно уменьшает видимое количество деталей.
Борьба с аберрациями заставляла постоянно вносить конструктивные изменения в схемы объектива и экспериментировать с различными стеклами. В итоге на полках магазинов имеются линзовые телескопы двух типов — ахроматы и апохроматы.
Телескоп рефрактор АПО фирмы Meade
Ахроматы. В этих телескопах хорошо исправлены все основные аберрации, но хроматическую полностью побороть так и не удалось. Цветная окантовка наблюдается у таких объектов как Луна, планеты и яркие звезды. Слегка снизить хроматическую аберрацию удается, только уменьшая относительное отверстие, что негативно сказывается на размерах трубы, делая телескоп громоздким и требовательным к жесткости монтировки.
Апохроматы. Главным образом благодаря использованию редкого и дорого стекла в этих телескопах удается избавиться от хроматической аберрации. Но использование редких элементов увеличивает стоимость телескопа.
Сильной стороной рефракторов является:
— простота использования;
— быстрая термостабилизация;
— устойчивость к разъюстированию (как правило, заводская юстировка сохраняется в течение многих лет использования);
— Мобильность. Основу модельного ряда рефракторов составляют телескопы с диаметром объектива 60-100 мм и фокусом 500 -1000 мм. Именно рефрактор зачастую является походным телескопом любителей астрономии, который они с легкостью берут с собой в поездки.
— Превосходное качество изображения. Большинство любителей астрономии заслуженно считают, что грамотно сделанный рефрактор дает наиболее красивую картинку в эстетическом плане. Изображение четкое, звезды выглядят точками на бархатно-черном небе.
— Идеально подходят для астрофотографии. Благодаря четкому изображению, лишенному хроматической аберрации, и большому относительному отверстию, быстрые апохроматы являются телескопами, самыми часто используемыми астрофотографами.
Недостатки:
— Цена. К сожалению, качественно изготовленный линзовый телескоп имеет самую высокую стоимость дюйма апертуры.
— Ограниченная апертура. Самые большие рефракторы, выпускаемые серийно, имеют диаметр объектива 150 мм (крайне редко 180 — 200 мм) и зачастую требуют стационарной установки. Такие модели обладают большим весом, требуют мощных монтировок и имеют высокую стоимость.
— Окрашенное изображение. Хроническая болезнь рефракторов, которую удается побороть только в апохроматах высшей ценовой категории.
Заслуженной популярностью среди любителей астрономии пользуются зеркальные телескопы системы Ньютона. Говорим рефлектор, подразумеваем Ньютон, хотя существуют и другие чисто зеркальные оптические схемы, но они мало распространены. Эти телескопы просты в изготовлении и имеют самую низкою стоимость за 1 дюйм апертуры.
В продаже имеются Ньютоны на EQ-монтировке и на монтировке Добсона.
Добсон — это телескоп-рефлектор системы Ньютона на Alt-Az монтировке, предложенной известным популяризатором астрономии Джоном Добсоном. Идея Добсона состоит в том, что каждый любитель астрономии сможет построить свой телескоп, используя подручные материалы. Шлифовать зеркала астрономы научились давно, а вот сделать в домашних условиях качественную монтировку было большой проблемой. Найденный выход из ситуации был до гениальности прост. Джон Добсон установил трубу телескопа в фанерную коробку, где она смогла перемещаться с небольшим трением по двум осям. Жесткость такой монтировки позволяет проводить визуальные наблюдения с достаточным комфортом.
Идея была подхвачена другими любителями, и на сегодняшний день можно смело заявить, что Добсон — самый популярный телескоп среди любителей астрономии.
Благодаря Добсону астрономы-любители получили возможность построить телескопы небывалых до этого размеров. В настоящее время средним по апертуре Добсоном считается 10/12-дюймовый телескоп, и планка продолжает подниматься, так как наличие у астролюбителей апертуры в 20-30 дюймов — уже не редкость. На растущий спрос быстро отреагировали производители, предложив уже готовые решения по крайне заманчивой цене. Сегодня в ассортименте таких фирм как Meade и Sky Watcher можно найти добротно выполненные модели Добсонов с диаметром объектива от 6 до 16 дюймов, цены на которые начинаются от 8 000 рублей.
Плюсы:
— Цена. Самая низкая стоимость за 1 дюйм апертуры.
— Устойчивость. Грамотно сконструированная монтировка обладает достаточной жесткостью для проведения визуальных наблюдений. Легкое дрожание изображения наблюдается только при касании фокусировочного узла или перемещении трубы, но быстро затухает.
— Простота использования. Как правило, сборка, настройка и наведение на объект не вызывают сложностей даже у новичка.
— Качество изображения.Зеркальные телескопы, в отличие от линзовых ахроматов, свободны от хроматической аберрации.
— Малое время темостабилизации. В среднем, через 30-40 минут после выноса на улицу телескоп полностью готов к наблюдениям.
— Транспортабельность. Наличие легкой монтировки и, нередко, разборной трубы, делают Добсоны более пригодными к переноске на большие расстояния, чем телескопы аналогичной апертуры, но других оптических систем.
Минусы:
— Требуется частая юстировка. По сравнению с другими оптическими схемами, Ньютоны достаточно капризны к транспортировке, после которой нередко сбивается первоначальная юстировка. Смысл юстировки (коллимации) заключается в совмещении оптических осей главного и вторичного зеркала. Процесс несложный и, после небольшой тренировки, занимает несколько минут.
— Открытая труба. Неизбежно попадание пыли и выпадение конденсата внутри трубы.
— Сама монтировка Добсона. Как ни удивительно, но где плюсы, там и минусы. Как мы уже говорили, Добсон — чисто визуальный телескоп на альт-азимутальной монтировке со всеми ее недостатками. Ситуацию улучшает наличие экваториальной платформы, с помощью которой монтировка легко превращается в экваториальную. Стоимость такого устройства в среднем 800 $. По тем же причинам на Добсоне невозможно получить фотографии приемлемого качества.
Несовершенство Добсона можно решить в ущерб мобильности и простоте, установив трубу рефлектора на EQ. После снабжения такой монтировки системой Go-To или часовым механизмом появляется возможность проводить фотографические наблюдения, и отпадает необходимость ручного слежения за убегающим из поля зрения объектом.
Катадиоптрики или зеркально-линзовые телескопы сочетают в себе лучшее от рефракторов и рефлекторов. Они свободны от многих аберраций, изображения не отягощены радужной окантовкой, у них закрытая труба (кроме Клевцова), компактные размеры и сравнительно небольшой вес.
Есть несколько типов зеркально-линзовых телескопов, доступных для приобретения в астрономических магазинах: Максутов-Кассегрен, Шмитд-Кассегрен, Шмидт-Ньютон, Максутов-Ньютон, Клевцов. В рамках этой статьи мы не будем подробно рассматривать каждую из этих схем, а рассмотрим некоторые общие принципы, заложенные в основу катадиоптриков, их минусы и плюсы.
Согласно законам оптики, точность поверхности зеркала должна быть не хуже λ/8, где λ -длина волны (видимый свет — 5 500 нм). Таким образом, основная сложность изготовления зеркала состоит в необходимости очень точно соблюдать кривизну поверхности. Изготовить сферическое зеркало технологически гораздо проще, чем параболическое, которое используется в телескопах-рефлекторах. Но сферическое зеркало само по себе обладает очень большими сферическими аберрациями и не пригодно для использования. Идея, заложенная в зеркально-линзовых телескопах — это попытка исправить аберрации сферического зеркала добавлением в оптическую систему линзы особой кривизны (корректора или мениска) и получить относительно дешевый, но качественный телескоп.
Шмитд-Кассегрен (ШК, английская аббревиатура SCT)
За рубежом ШК очень популярны. Когда началось массовое производство этих телескопов, снабженных системой автоматического наведения на объект, они произвели революцию не хуже, чем Добсоны. Напичканные электроникой, недорогие и компактные ШК вызвали живой интерес любителей астрономии, которые ринулись в магазины и с большим удовольствием расставались со своими деньгами. Эта волна ажиотажа не прошла и по нынешний день. Неужели они действительно так хороши? Как сказать… Их популярность можно описать пословицей «и швец, и жнец, и на дуде игрец». Т.е., ШК — это рабочая лошадка, которая подойдет невзыскательным любителям. ШК способен показать наблюдателю хорошие виды планет и Луны, но из-за большого центрального экранирования (порядка 34%) изображение будет терять контраст. Опять же по проницанию и разрешению ШК хуже, чем рефлекторы и рефракторы аналогичной апертуры, а фотографии, полученные на этих телескопах, неплохие, но недотягивают по уровню до быстрых апохроматов, установленных на монтировки высшего класса. Тем не менее, Шмитд-Касегрены — это одни из лучших телескопов по соотношению цена-качество.
Классический Шмидт-Кассегрен.
Телескоп производства фирмы Meade
Максутов-Кассегрен (МК, МАК английская аббревиатура MCT)
Изобретенный в 40-х годах прошлого века, телескоп системы Максутова долгие годы был мало распространен среди любителей астрономии во всем мире и, главным образом, из-за отсутствия предложений по вменяемой цене. Этот компактный телескоп дает великолепные изображения Луны и планет. Опытные любители получают на МАКах прекрасные фотографии, несмотря на то, что он обладает маленькой светосилой (1/15) и, как следствие, требует длительных выдержек. В настоящее время в продаже имеются МК произведенные в Китае под разными мировыми брендами, самые известные из которых Meade и Celestron. Но истинные ценители предпочитают приобретать МАКи премиум-класса, произведенные на заказ или выпускаемые ограниченными партиями. Зачастую на такие телескопы существует очередь на год вперед. К недостаткам данной системы можно отнести очень большое время термостабилизации, которое увеличивается с ростом апертуры. 5/7-дюймовый МК в среднем остывает порядка 1.5-2 часов, тогда как полная термостабилизация 10-дюймового телескопа может так и не наступить в течение всей ночи.
Еще одним негативным моментом является цена. МАКи класса премиум — одни из самых дорогих телескопов по стоимости одного дюйма апертуры.
Максутов-Кассегрен выпускаемый фирмой Orion
Шмидт-Ньютон и Максутов-Ньютон (ШН и МН, в английской аббревиатуре SN и MN)
Еще один вид зеркально-линзовых телескопов, построенных по системе Ньютона, с внесенной в конструкцию коррекционной пластиной (ШН) или мениском (в случае МН).
Корректоры частично устраняют аберрации классического Ньютона, позволяя ему давать более четкое изображение планет и Луны. Нередко используются для астрофотографии.
Телескоп | Плюсы | Минусы |
Рефрактор ахромат |
Портативен при малых апертурах; Контрастное изображение; Умеренная цена за дюйм апертуры; Быстрая термостабилизация; Рекомендуются для наблюдений Луны, Солнца, планет и двойных звезд. |
Маленькая апертура; Подвержен хроматической аберрации. |
Рефрактор апохромат |
Портативен при малых апертурах; Чистое и контрастное изображение; Быстрая термостабилизация; Идеален для наблюдений Луны, Солнца, планет, двойных звезд и астрофотографии. |
Высокая стоимость 1 дюйма апертуры. |
Рефлектор Ньютона на EQ Наиболее популярен с апертурой 3-8 дюймов |
Низкая стоимость за дюйм апертуры; Легко юстируется (при небольших апертурах); Быстро термостабилизируется; Отсутствует хроматическая аберрация; Рекомендуется для наблюдений Луны, Солнца, планет, галактик, туманностей, звездных скоплений, подходит для астрофотографии. |
Открытая труба способствует попаданию пыли; Требует юстировки. |
Добсон Наиболее популярен с апертурой 8-16 дюймов. |
Самая низкая стоимость за дюйм апертуры; Отсутствует хроматическая аберрация; Управление интуитивно понятно; Быстро термостабилизируется; Идеален для наблюдений галактик, туманностей и звездных скоплений. |
При юстировке часто требуется посторонняя помощь; Среди широкоугольных окуляров только модели премиум-класса способны дать хорошое изображение по всему полю; Затруднительное слежение за объектом; Открытая труба способствует попаданию пыли и грязи; При апертуре свыше 10 дюймов имеет довольно внушительные размеры. |
Шмитд-Кассегрен Наиболее популярен с апертурой 4-11 дюймов |
Портативен; Закрытая труба препятствует попаданию пыли и грязи; Широкий выбор окуляров по доступной цене; Адаптируется для астрофотографии; Рекомендуется для наблюдений Солнца, планет, галактик, туманностей, звездных скоплений, подходит для астрофотографии. |
Большое время термостабилизации; Большое вторичное зеркало уменьшает контрастность изображения; Качество изображения хуже, чем в хорошем рефракторе и рефлекторе; При фотографировании необходимы большие выдержки; Модели на Alt-Az монтировках не позволяют наблюдать околозенитную область. |
Максутов-Кассегрен |
Резкое и контрастное изображение; Портативен; Закрытая труба препятствует попаданию пыли и грязи; Адаптируется для астрофотографии; Идеален для наблюдений Солнца, Луны и планет. |
Высокая цена за дюйм апертуры; Очень большое время термостабилизации; При фотографировании необходимы большие выдержки; Малое поле зрения. |
Читать по теме: 5 советов по выбору телескопа
Внимание! Если у вас возникли вопросы или сомнения в выборе телескопа, спросите совета на нашем форуме в разделеВыбираем телескоп, бинокль, окуляры и тд.
Автор Роман Бакай. 2008 год
Роман является основателем и шеф-редактором сайта RealSky.ru,
где он пишет о практической любительской астрономии, дает советы новичкам
на форуме и ведет личный блог.
Так же, Роман основал компанию R-Sky по производству оборудования необходимого для каждого любителя астрономии.
Наша компания имеет богатый опыт сотрудничества и участия в тендерах с государственными и частными компаниями. Мы предлагаем большой набор готовых решений для образовательных учреждений, а также работаем по индивидуальным техническим заданиям.
Если вы являетесь участником или организатором тендера или госзакупки, заполните, пожалуйста, форму и опишите свой запрос. Наш специалист по работе с корпоративными заказчиками обязательно с вами свяжется. Вы также можете связаться с нами по телефону: +7 (812) 418-29-44 (доб. 117 или доб. 106).