Как найти циклическую частоту в маятнике

Формула циклической частоты колебаний в физике

Формула циклической частоты колебаний

Определение и формула циклической частоты колебаний

Определение

Циклическая частота — это параметр, характеризующий колебательные движения. Обозначают эту скалярную
величину как $omega $, иногда ${omega }_0$.

Напомним, что уравнение гармонических колебаний параметра $xi $ можно записать как:

[xi left(tright)=A{cos left({omega }_0t+{varphi }_0right) }left(1right),]

где $A={xi }_{max}$ — амплитуда колебаний величины $xi $; $left({omega }_0t+{varphi }_0right)$=$varphi $ — фаза колебаний; ${varphi }_0$ — начальная фаза колебаний.

Циклическую частоту при гармонических колебаниях определяют как частную производную от фазы колебаний ($varphi $) по времени ($t$):

[{omega }_0=frac{?varphi }{partial t}=dot{varphi }left(2right).]

Циклическая частота колебаний связана с периодом ($T$) колебаний формулой:

[{omega }_0=frac{2pi }{T}left(3right).]

Циклическую частоту с частотой $?$$?$ связывает выражение:

[{omega }_0=2pi nu left(4right).]

Формулы для частных случаев нахождения циклической частоты

Пружинный маятник совершает гармонические колебания с циклической частотой равной:

[{omega }_0=sqrt{frac{k}{m}}left(5right),]

$k$ — коэффициент упругости пружины; $m$ — масса груза на пружине.

Гармонические колебания физического маятника происходят с циклической частотой равной:

[{omega }_0=sqrt{frac{mga}{J}}left(6right),]

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние между центром масс маятника и точкой подвеса; $m$ — масса маятника.

Частным случаем физического маятника является математический маятник (физический маятник, масса которого сосредоточена в точке), циклическая частота его колебаний может быть найдена как:

[{omega }_0=sqrt{frac{g}{l}}left(7right),]

где $l$ — длина подвеса, на которой находится материальная точка.

Частота колебаний в электрическом контуре равна:

[{omega }_0=frac{1}{sqrt{LC}}left(8right),]

где $C$ — емкость конденсатора, который входит в контур; $L$ — индуктивность катушки контура.

Если колебаний являются затухающими, то их частоту находят как:

[omega =sqrt{{omega }^2_0-{delta }^2}left(9right),]

где $delta $ — коэффициент затухания; в случае с затуханием колебаний, ${omega }_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Пример 1

Задание. В электрический колебательный контур (рис.1) входит соленоид, длина которого $l$, площадь поперечного сечения $S_1$, число витков $N $и плоский конденсатор с расстоянием между пластинами $d$, площадью пластин $S_2$. Какова частота собственных колебаний контура (${omega }_0$)?

Формула циклической частоты колебаний, пример 1

Решение. Основой для решения задачи служить формула для частоты колебаний в электрическом контуре:

[{omega }_0=frac{1}{sqrt{LC}}left(1.1right).]

Элементом, обладающим индукцией в нашем контуре является соленоид. Индуктивность соленоида равна:

[L=mu {mu }_0frac{N^2S_1}{l}left(1.2right),]

где $mu =1$, ${mu }_0$ — магнитная постоянная.

Емкость плоского конденсатора вычислим по формуле:

[C=frac{varepsilon {varepsilon }_{0 }S_2}{d}left(1.3right),]

где $varepsilon =1$, ${varepsilon }_{0 }$ — электрическая постоянная.

Правые части выражений (1.2) и (1.3) подставим в (1.1) вместо соответствующих величин:

[{omega }_0=frac{1}{sqrt{LC}}=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}left(1.4right).]

Ответ. ${omega }_0=sqrt{frac{ld}{{{mu }_0{varepsilon }_{0 }N}^2S_1S_2}}$

Пример 2

Задание. Чему равна циклическая частота гармонических колебаний материальной точки, если амплитуда скорости точки равна ${dot{x}}_{max}=v_0$, амплитуда ее ускорения: ${ddot{x}}_{max}=a_0$? Начальная фаза колебаний равна нулю.

Решение. Из контекста условий задачи понятно, что колебания совершает координата $x$, поэтому уравнение колебаний (в общем виде) запишем как:

[xleft(tright)=A{cos left({omega }_0t+{varphi }_0right)= }A{cos left({omega }_0tright) }left(2.1right),]

По условию задачи ${varphi }_0$=0. Тогда уравнение для скорости изменения параметра $xleft(tright)$ имеет вид:

[dot{x}left(tright)=vleft(tright)=-A{omega }_0{sin left({omega }_0tright)left(2.2right). }]

Из выражения (2.2) следует, что:

[{dot{x}}_{max}=v_0=A{omega }_0left(2.3right).]

Уравнение для ускорения материальной точки, используя (2.2) запишем как:

[ddot{x}left(tright)=aleft(tright)=-A{{omega }_0}^2{cos left({omega }_0tright)left(2.4right). }]

Получаем, что:

[{ddot{x}}_{max}=A{{omega }_0}^2=a_0 left(2.5right).]

Мы получили следующую систему из двух уравнений с двумя неизвестными:

[left{ begin{array}{c}
v_0=A{omega }_0 \
a_0=A{{omega }_0}^2 end{array}
right.left(2.6right).]

Найдем отношение $frac{a_0}{v_0}$, получим:

[frac{a_0}{v_0}={omega }_0.]

Ответ. ${omega }_0=frac{a_0}{v_0}$

Читать дальше: формула частоты колебаний пружинного маятника.

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 430 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Механические колебания.

  • Гармонические колебания.

  • Уравнение гармонических колебаний.

  • Пружинный маятник.

  • Математический маятник.

  • Свободные и вынужденные колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний T — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний nu — это величина, обратная периоду: nu =1/T. Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

к оглавлению ▴

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой x. Положению равновесия отвечает значение x=0. Основная задача механики в данном случае состоит в нахождении функции x(t) , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на pi /2, можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

x=Acos(omega t+alpha ) (1)

Выясним смысл входящих в эту формулу величин.

Положительная величина A является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому A — амплитуда колебаний.

Аргумент косинуса omega t+alpha называется фазой колебаний. Величина alpha , равная значению фазы при t=0 , называется начальной фазой. Начальная фаза отвечает начальной координате тела: x_{0}=Acos alpha .

Величина называется omega циклической частотой. Найдём её связь с периодом колебаний T и частотой nu. Одному полному колебанию отвечает приращение фазы, равное 2 pi радиан: omega T=2 pi, откуда

omega = frac{displaystyle 2pi }{displaystyle T} (2)

omega =2 pi nu (3)

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1):

x=Acos(frac{displaystyle 2pi t }{displaystyle T}+ alpha), x=Acos(2 pi nu t + alpha).

График функции (1), выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1.

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину x_{0} и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае x_{0}=A, поэтому можно положить alpha=0. Мы получаем закон косинуса:

x=Acos omega t.

График гармонических колебаний в этом случае представлен на рис. 2.

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае x_{0}=0, так что можно положить alpha =-pi /2. Получаем закон синуса:

x=Asin omega t.

График колебаний представлен на рис. 3.

Рис. 3. Закон синуса

к оглавлению ▴

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1). Дифференцируем это равенство:

v_{x}=dot{x}=-Aomega sin(omega t+alpha ). (4)

Теперь дифференцируем полученное равенство (4):

a_{x}=ddot{x}=-Aomega^{2} cos(omega t+alpha ). (5)

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем -omega^{2}:

a_{x}=-omega^{2}x. (6)

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

ddot{x}+omega^{2}x=0. (7)

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными A, alpha;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6), (7) описывают гармонические колебания с циклической частотой omega и только их. Две константы A, alpha определяются из начальных условий — по начальным значениям координаты и скорости.

к оглавлению ▴

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу m, жёсткость пружины равна k.

Координате x=0отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости vec F со стороны пружины. Второй закон Ньютона для груза в проекции на ось X имеет вид:

ma_{x}=F_{x}. (8)

Если x>0 (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и F_{x}<0. Наоборот, если x<0, то F_{x}>0. Знаки x и F_{x} всё время противоположны, поэтому закон Гука можно записать так:

F_{x}=-kx

Тогда соотношение (8) принимает вид:

ma_{x}=-kx

или

a_{x}=-frac{displaystyle k}{displaystyle m}x.

Мы получили уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle k}{displaystyle m}.

Циклическая частота колебаний пружинного маятника, таким образом, равна:

omega =sqrt{frac{displaystyle k}{displaystyle m}}. (9)

Отсюда и из соотношения T=2 pi / omega находим период горизонтальных колебаний пружинного маятника:

T=2 pi sqrt{frac{displaystyle m}{displaystyle k}}. (10)

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10).

к оглавлению ▴

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна l. Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

m vec a=m vec g + vec T,

и спроектируем его на ось X:

ma_{x}=T_{x}.

Если маятник занимает положение как на рисунке (т. е. x>0), то:

T_{x}=-Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Если же маятник находится по другую сторону от положения равновесия (т. е. x<0), то:

T_{x}=Tsinvarphi =-Tfrac{displaystyle x}{displaystyle l}.

Итак, при любом положении маятника имеем:

ma_{x}=-Tfrac{displaystyle x}{displaystyle l}. (11)

Когда маятник покоится в положении равновесия, выполнено равенство T=mg. При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство T approx mg. Воспользуемся им в формуле (11):

ma_{x}=-mgfrac{displaystyle x}{displaystyle l},

или

a_{x}=-frac{displaystyle g}{displaystyle l}x.

Это — уравнение гармонических колебаний вида (6), в котором

omega ^{2}=frac{displaystyle g}{displaystyle l}.

Следовательно, циклическая частота колебаний математического маятника равна:

omega =sqrt{frac{displaystyle g}{displaystyle l}}. (12)

Отсюда период колебаний математического маятника:

T=2pi sqrt{frac{displaystyle l}{displaystyle g}}. (13)

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

к оглавлению ▴

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6).

Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы F(t), периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна omega_{0}, а вынуждающая сила зависит от времени по гармоническому закону:

F(t)=F_{0}cos omega t.

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
omega вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7.

Рис. 7. Резонанс

Мы видим, что вблизи частоты omega=omega_{r} наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: omega_{r} approx omega_{0}, и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, omega_{r} = omega_{0}, а амплитуда колебаний возрастает до бесконечности при omega Rightarrow omega_{0}.

Благодарим за то, что пользуйтесь нашими материалами.
Информация на странице «Механические колебания.» подготовлена нашими редакторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

18 Понятие колебательного движения.
Период и частота колебаний

Колеба́ния —
повторяющийся в той или иной степени
во времени
процесс изменения состояний системы
около точки равновесия. Например, при
колебаниях маятника
повторяются отклонения его в ту и другую
сторону от вертикального положения;
при колебаниях в электрическом
колебательном
контуре
повторяются величина
и направление тока,
текущего через катушку.

Колебания
почти всегда связаны с попеременным
превращением энергии
одной формы проявления в другую форму.

Колебания
различной физической природы имеют
много общих закономерностей и тесно
взаимосвязаны c волнами.
Поэтому исследованиями этих закономерностей
занимается обобщённая теория
колебаний и волн
. Принципиальное
отличие от волн: при колебаниях не
происходит переноса энергии, это, так
сказать, «местные» преобразования
энергии.

Выделение
разных видов колебаний зависит от
подчёркиваемых свойств колеблющихся
систем (осцилляторов)

[править]
По физической природе

  • Механические
    (звук,
    вибрация)

  • Электромагнитные
    (свет,
    радиоволны,
    тепловые)

  • Смешанного
    типа
     —
    комбинации вышеперечисленных

[править]
По характеру взаимодействия с окружающей
средой

  • Вынужденные —
    колебания, протекающие в системе под
    влиянием внешнего периодического
    воздействия. Примеры: листья на деревьях,
    поднятие и опускание руки. При вынужденных
    колебаниях может возникнуть явление
    резонанса:
    резкое возрастание амплитуды колебаний
    при совпадении собственной
    частоты

    осциллятора
    и частоты внешнего воздействия.

  • Свободные
    (или собственные)
     —
    это колебания в системе под действием
    внутренних сил, после того как система
    выведена из состояния равновесия (в
    реальных условиях свободные колебания
    всегда затухающие).
    Простейшими примерами свободных
    колебания являются колебания груза,
    прикреплённого к пружине, или груза,
    подвешенного на нити.

  • Автоколебания —
    колебания, при которых система имеет
    запас потенциальной
    энергии
    ,
    расходующейся на совершение колебаний
    (пример такой системы — механические
    часы
    ).
    Характерным отличием автоколебаний
    от свободных колебаний является, то
    что их амплитуда определяется свойствами
    самой системы, а не начальными условиями.

  • Параметрические —
    колебания, возникающие при изменении
    какого-либо параметра колебательной
    системы в результате внешнего воздействия.

  • Случайные —
    колебания, при которых внешняя или
    параметрическая нагрузка является
    случайным процессом.

[править]
Характеристики

  • Амплитуда —
    максимальное отклонение колеблющейся
    величины от некоторого усреднённого
    её значения для системы,

    (м)

  • Период —
    промежуток времени, через который
    повторяются какие-либо показатели
    состояния системы (система совершает
    одно полное колебание),

    (сек)

  • Частота —
    число колебаний в единицу времени,


    (Гц,
    сек
    −1).

Период
колебаний

и
частота

 —
обратные величины;


и

В
круговых или циклических процессах
вместо характеристики «частота»
используется понятие круговая
(циклическая)

частота

(рад/сек,
Гц, сек
−1),
показывающая число колебаний за 2π
единиц времени:

  • Смещение
    — отклонение тела от положения
    равновесия. Обозначение Х, Единица
    измерения метр.

  • Фаза
    колебаний
     —
    определяет смещение в любой момент
    времени, то есть определяет состояние
    колебательной системы.

19 Гармонические
колебания. Векторная диаграмма
гармонического колебания. Циклическая
частота, фаза, начальная фаза

Гармоническое
колебание
 —
явление периодического изменения
какой-либо величины, при котором
зависимость от аргумента имеет характер
функции синуса или косинуса. Например,
гармонически колеблется величина,
изменяющаяся во времени следующим
образом:

x(t)
= Asin(ωt
+ φ)

или

x(t)
= Acos(ωt
+ φ),

Графики
функций f(x)
= sin(x)
и g(x)
= cos(x)
на декартовой плоскости.

где
х —
значение изменяющейся величины, t —
время, остальные параметры — постоянные:
А —
амплитуда колебаний, ω —
циклическая частота колебаний, (ωt
+ φ) — полная фаза колебаний,

 —
начальная фаза колебаний.

Обобщенное
гармоническое колебание в дифференциальном
виде

(Любое
нетривиальное

решение этого дифференциального
уравнения — есть гармоническое колебание
с циклической частотой ω.)

Способ
векторных диаграмм.

Пусть величина х изменяется со временем
по закону

На
плоскости выбирают произвольно
направленную координатную ось Ох.
Из начала координат под углом

равным
начальной фазе колебаний, проводят
вектор

,
модуль которого равен амплитуде
гармонического колебания A (рис. 13.5).
Если вектор

вращается
вокруг точки О с постоянной угловой
скоростью

против
часовой стрелки, то угол

между
вращающимся вектором и осью Ох
в любой момент времени определится
выражением

Проекция
конца вектора

будет
перемещаться по оси Ох
и принимать значения от —А до +А, а
колеблющаяся величина будет изменяться
со временем по закону

Рис.
13.5

Таким
образом, гармоническое колебание можно
представить проекцией на некоторую
произвольно выбранную ось вектора
амплитуды

,
отложенного от произвольной точки оси
под углом

,
равным начальной фазе, и вращающегося
с угловой скоростью

вокруг
этой точки.

Циклическая частота
колебний (ω)
— число колебаний за 2π
секунд.



связь циклической частоты с частотой
колебаний и периодом.

Циклическая
частота в уравнениях колебаний:

циклическая частота колебаний
математического маятника.

Фа́за
колеба́ний
 —
физическая величина, при заданной
амплитуде
и коэффициенте
затухания
,
определяющая состояние колебательной
системы в любой момент времени.[1]
Если колебания системы описываются
синусоидальным (косинусоидальным) или
экспоненциальным законами:

Acos(ωt
+ φ0),

Asin(ωt
+ φ0),


,

то
фаза колебаний определяется как аргумент
периодической функции,
описывающей гармонический колебательный
процесс (ω— угловая
частота

(чем величина выше, тем на большее
значение изменяется угол за ед. времени),
t
время,
φ0
(угол в начале колебаний) начальная фаза
колебаний, то есть фаза колебаний в
начальный момент времени t
= 0).

Фаза
обычно выражается в угловых единицах
(радианах,
градусах)
или в циклах
(долях периода):

1
цикл = 2π радиан = 360 градусов.

Строго
говоря, этот термин относится только к
колебаниям, но его также применяют и к
другим периодическим и квазипериодическим
процессам.

20 Гармонические
колебания под действием упругой силы
(вывод закона Гука)

Пружинный
маятник состоит из пружины и массивного
шара, насаженного на горизонтальный
стержень, вдоль которого он может
скользить. Пусть на пружине укреплен
шарик с отверстием, который скользит
вдоль направляющей оси (стержня). На
рис. 7.2,а показано положение шара в
состоянии покоя; на рис. 7.2,б — максимальное
сжатие и на рис. 7.2,в -произвольное
положение шарика.

Под
действием возвращающей силы, равной
силе сжатия, шарик будет совершать
колебания. Сила сжатия F = -kx , где k —
коэффициент жесткости пружины. Знак
минус показывает, что направление силы
F и смещение х противоположны. Потенциальная
энергия сжатой пружины


кинетическая


.

Для
вывода уравнения движения шарика
необходимо связать х и t. Вывод основывается
на законе сохранения энергии. Полная
механическая энергия равна сумме
кинетической и потенциальной энергии
системы. В данном случае :


.

В
положении б)

:


.

Так
как в рассматриваемом движении выполняется
закон сохранения механической энергии,
можно записать:


.

Определим
отсюда скорость:

Но
в свою очередь

и,
следовательно,


.

Разделим
переменные


.

Интегрируя
это выражение, получим:


,

где



постоянная интегрирования.

Из
последнего следует, что

(7.2)

Сравнивая
(7.1) с (7.2), получаем

(7.3)

Таким
образом, под действием упругой силы
тело совершает гармонические колебания.
Силы иной природы, чем упругие, но в
которых выполняется условие F = -kx,
называются квазиупругими. Под действием
этих сил тела тоже совершают гармонические
колебания. При этом:

смещение:

скорость:

ускорение:

Сила
упругости, возникающая в теле при его
деформации, прямо пропорциональна
величине этой деформации

Для
тонкого растяжимого стержня закон Гука
имеет вид:

Здесь
F — сила натяжения стержня, Δl —
абсолютное удлинение (сжатие) стержня,
а k называется коэффициентом
упругости
(или жёсткости).

Коэффициент
упругости зависит как от свойств
материала, так и от размеров стержня.
Можно выделить зависимость от размеров
стержня (площади поперечного сечения
S и длины L) явно, записав коэффициент
упругости как

Величина
E называется Модулем
упругости первого рода или модулем Юнга

и является механической характеристикой
материала.

Если
ввести относительное удлинение

и
нормальное напряжение в поперечном
сечении

то
закон Гука в относительных единицах
запишется как

В
такой форме он справедлив для любых
малых объёмов вещества.

Также
при расчёте прямых стержней применяют
запись закона Гука в относительной
форме

Следует
иметь в виду, что закон Гука выполняется
только при малых деформациях. При
превышении предела
пропорциональности
связь между
напряжениями и деформациями становится
нелинейной. Для многих сред закон Гука
неприменим даже при малых деформациях.

21 Циклическая частота
и период колебаний под действием упругой
силы. Энергия колебания.

ЧАСТИЧНО НЕ НАЙДЕНО

При
механических
колебаниях колеблющееся тело (или
материальная точка) обладает кинетической
и потенциальной энергией. Кинетическая
энергия тела W:

(Скорость
тела v
= ds/dt)

        Для
вычисления потенциальной энергии тела
воспользуемся самой общей формулой,
связывающей силу и потенциальную энергию
тела в поле этой силы:

где
U — потенциальная энергия, набираемая
(или теряемая) телом, движущимся в силовом
поле F от точки 0 (точки, в которой
потенциальная энергия принимается
равной 0) до точки х.

        Для
силы, линейно зависящей от смещения
(как в случае наших механических
маятников, такие силы носят общее
название квазиупругих сил) мы имеем:

Сравнивая
формулы

для
кинетической и потенциальной энергии
механического маятника, можно сделать
следующие выводы:

1.
Полная механическая энергия тела не
изменяется при колебаниях:

2.
Частота колебаний кинетической и
потенциальной энергии в 2 раза больше
частоты колебаний маятника.

3.
Колебания кинетической и потенциальной
энергии сдвинуты друг относительно
друга по фазе на 
(на полпериода). Когда кинетическая
энергия достигает максимума, потенциальная
— минимума (нуля) и наоборот. Энергия при
колебаниях постоянно перекачивается
из потенциальной в кинетическую и
обратно.

        В
случае электрических колебаний энергия
в конуре представляет собой сумму
энергии электрического поля, запасенной
между обкладками конденсатора, и энергии
магнитного поля, запасенной в катушке
с индуктивностью. Вычислим обе
составляющие.

       
Сравнивая
эти формулы, можно сделать следующие
выводы:

1.
Полная энергия в контуре остается
неизменной:

2.
Частота колебаний энергий в 2 раза
превосходит частоту колебаний заряда
и тока в контуре.

3. Электрическая и
магнитная энергии сдвинуты по фазе на
полпериода друг относительно друга;
происходит непрерывное перекачивание
энергии из одной формы в другую и обратно.

       
Поскольку
в контуре происходят колебания
электрической и магнитной энергий,
электрический колебательный контур
также называют электромагнитным.

22 Сложение одинокого
направленных гармонических колебаний.

Колеблющееся
тело может принимать участие в нескольких
колебательных процессах, тогда следует
найти результирующее колебание, другими
словами, колебания необходимо сложить.
В данном разделе будем складывать
гармонические колебания одного
направления и одинаковой частоты

применяя
метод вращающегося вектора амплитуды,
построим графически векторные диаграммы
этих колебаний (рис. 1). Tax как векторы A1
и A2
вращаются с одинаковой угловой скоростью
ω0,
то разность фаз (φ2
— φ1)
между ними будет оставаться постоянной.
Значит, уравнение результирующего
колебания будет


(1)

В формуле (1) амплитуда А и начальная
фаза φ соответственно определяются
выражениями


(2)

Значит,
тело, участвуя в двух гармонических
колебаниях одного направления и
одинаковой частоты, совершает при этом
также гармоническое колебание в том же
направлении и с той же частотой, что и
складываемые колебания. Амплитуда
результирующего колебания зависит от
разности фаз (φ2
— φ1)
складываемых колебаний.

Рис.1

Исследуем
выражение (2) в зависимости от разности
фаз (φ2
— φ1):

1) φ2
— φ1
= ±2mπ (m = 0, 1, 2, …), тогда A=A1+A2,
т. е. амплитуда результирующего колебания
А будет равна сумме амплитуд складываемых
колебаний;

2) φ2
— φ1
= ±(2m+1)π (m = 0, 1, 2, …), тогда A=|A1–A2|,
т. е. амплитуда результирующего колебания
будет равна разности амплитуд складываемых
колебаний.

Для практики представляет
особый интерес случай, когда два
складываемых гармонических колебания
одинакового направления мало отличаются
по частоте. После сложения этих колебаний
получаются колебания с периодически
изменяющейся амплитудой. Периодические
изменения амплитуды колебания, которые
возникают при сложении двух гармонических
колебаний с близкими частотами, называются
биениями.

Пусть амплитуды складываемых
колебаний равны А, а частоты равны ω и
ω+Δω, причем Δω<<ω. Выберем начало
отсчета так, чтобы начальные фазы обоих
колебаний были равны нулю:

Складывая
эти выражения и учитывая, что во втором
сомножителе Δω/2<<ω, получим


(3)

Результирующее колебание (3) можно
считать как гармоническое с частотой
ω , амплитуда Аσ
которого изменяется по следующему
периодическому закону:


(4)

Частота изменения Аσ
в два раза больше частоты изменения
косинуса (так как берется по модулю), т.
е. частота биений равна разности частот
складываемых колебаний:

Период
биений

Вид
зависимости (3) показан на рис. 2, где
сплошные жирные линии представляют
график результирующего колебания (3), а
огибающие их линии — график медленно
меняющейся согласно уравнению (4)
амплитуды.

Рис.2

Нахождение
частоты тона (звука определенной высоты)
биений между эталонным и измеряемым
колебаниями — наиболее часто используемый
на практике метод сравнения измеряемой
величины с эталонной. Метод биений
применяется для настройки музыкальных
инструментов, анализа слуха и т. д.

При
исследовании сложного колебательного
процесса нужно знать, что любые сложные
периодические колебания s=f(t) можно
представить в виде суперпозиции
(наложения) одновременно совершающихся
гармонических колебаний с различными
амплитудами, начальными фазами, а также
частотами, которые кратны циклической
частоте ω0
:


(5)

Представление в виде (5) любой
периодической функции связывают с
понятием гармонического
анализа сложного периодического
колебания
,
или разложения
Фурье
.
Слагаемые ряда Фурье, которые определяют
гармонические колебания с частотами
ω0,
0,
0,
…, называются первой
(или основной),
второй,
третьей
и т. д. гармониками
сложного периодического колебания.

23 Колебания физического
маятника.

Физический маятник
осциллятор,
представляющий собой твёрдое
тело
, совершающее колебания
в поле
каких-либо сил
относительно точки, не являющейся
центром
масс
этого тела, или неподвижной
оси, перпендикулярной направлению
действия сил и не проходящей через центр
масс этого тела.

Определения



  • угол отклонения маятника от равновесия;



  • начальный угол отклонения маятника;



  • масса маятника;



  • расстояние от точки подвеса до центра
    тяжести маятника;



  • радиус инерции относительно оси,
    проходящей через центр тяжести.



  • ускорение свободного падения.

Момент
инерции
относительно оси,
проходящей через точку подвеса:


.

[Править] Дифференциальное уравнение движения физического маятника

Основная
статья
: Приведённая
длина

Пренебрегая
сопротивлением среды, дифференциальное
уравнение колебаний физического маятника
в поле силы тяжести записывается
следующим образом:


.

Полагая

,
предыдущее уравнение можно переписать
в виде:


.

Последнее
уравнение аналогично уравнению колебаний
математического
маятника
длиной

.
Величина

называется
приведённой
длиной
физического маятника.

[Править] Центр качания физического маятника

Центр
качания
— точка, в которой надо
сосредоточить всю массу физического
маятника, чтобы его период колебаний
не изменился.

Поместим
на луче,
проходящем от точки подвеса через центр
тяжести точку на расстоянии

от
точки подвеса. Эта точка и будет центром
качания маятника.

Действительно,
если всю массу сосредоточить в центре
качания, то центр качания будет совпадать
с центром масс. Тогда момент инерции
относительно оси подвеса будет равен

,
а момент
силы
тяжести относительно той
же оси

.
Легко заметить, что уравнение движения
не изменится.

[править]
Теорема Гюйгенса

[править]
Формулировка

Если
физический маятник подвесить за центр
качания, то его период колебаний не
изменится, а прежняя точка подвеса
сделается новым центром качания.

[править]
Доказательство

Вычислим
приведенную длину для нового маятника:


.

Совпадение
приведённых длин для двух случаев и
доказывает утверждение, сделанное в
теореме.

[править]
Период колебаний физического маятника

Для
того, чтобы найти период колебаний
физического маятника, необходимо решить
уравнение качания. Для этого умножим
левую часть этого уравнения на

,
а правую часть на

.
Тогда:


.

Интегрируя
это уравнение, получаем.


,

где

произвольная
постоянная. Её можно найти из граничного
условия, что в моменты

.
Получаем:

.
Подставляем и преобразовываем получившееся
уравнение:


.

Отделяем
переменные и интегрируем это уравнение:


.

Удобно
сделать замену переменной, полагая

.
Тогда искомое уравнение принимает вид:


.

Здесь


нормальный
эллиптический интеграл Лежандра 1-го
рода
. Для периода колебаний
получаем формулу:


.

Здесь


полный
нормальный эллиптический интеграл
Лежандра 1-го рода
.

[Править] Период малых колебаний физического маятника

Если
амплитуда колебаний

мала,
то корень в знаменателе эллиптического
интеграла приближенно равен единице.
Такой интеграл легко берется, и получается
хорошо известная формула малых колебаний:


.

24 Колебания
математического маятника

Математи́ческий
ма́ятник
 —
осциллятор,
представляющий собой механическую
систему
,
состоящую из материальной
точки
,
находящейся на невесомой
нерастяжимой
нити или на невесомом стержне
в однородном поле сил тяготения.
Период
малых собственных колебаний
математического маятника длины l
неподвижно подвешенного в однородном
поле тяжести с ускорением
свободного падения

g
равен

и
не зависит[1]
от амплитуды
и массы
маятника.

Плоский
математический маятник со стержнем —
система с одной степенью
свободы
.
Если же стержень заменить на растяжимую
нить, то это система с двумя степенями
свободы со связью. Пример школьной
задачи, в которой важен переход от одной
к двум степеням свободы.

При
малых
колебаниях

физический
маятник

колеблется так же, как математический
с приведённой
длиной
.

Уравнение
колебаний маятника

Колебания
математического маятника описываются
обыкновенным
дифференциальным уравнением

вида

где
ω ― положительная константа, определяемая
исключительно из параметров маятника.
Неизвестная функция x(t)
― это угол отклонения маятника в момент
t
от нижнего положения равновесия,
выраженный в радианах;

,
где L
― длина подвеса, g
ускорение
свободного падения
.
Уравнение малых колебаний маятника
около нижнего положения равновесия
(т. н. гармоническое уравнение) имеет
вид:


.

[править]
Решения уравнения движения

[править]
Гармонические колебания

Маятник,
совершающий малые колебания, движется
по синусоиде. Поскольку уравнение
движения является обыкновенным ДУ
второго порядка, для определения закона
движения маятника необходимо задать
два начальных условия — координату
и скорость, из которых определяются две
независимых константы:

где
A —
амплитуда
колебаний маятника, θ0 —
начальная фаза
колебаний, ω — циклическая
частота
,
которая определяется из уравнения
движения. Движение, совершаемое маятником,
называется гармоническими
колебаниями

[править]
Нелинейный маятник

Для
маятника, совершающего колебания с
большой амплитудой, закон движения
более сложен:

где


 —
это синус
Якоби
.
Для

он
является периодической функцией, при
малых

совпадает
с обычным тригонометрическим синусом.

Параметр

определяется
выражением

где


 —
энергия маятника в единицах t−2.

Период
колебаний нелинейного маятника

где
K — эллиптический интеграл первого
рода.

[править]
Движение по
сепаратрисе

Движение
маятника по сепаратрисе является
непериодическим. В бесконечно далёкий
момент времени он начинает падать из
крайнего верхнего положения в какую-то
сторону с нулевой скоростью, постепенно
набирает её, и останавливается,
возвратившись в исходное положение.

25 Затухающие колебания.
Зависимость амплитуды от времени.

Затухающие колебания —
колебания, энергия которых уменьшается
с течением времени. Бесконечно длящийся
процесс вида

в
природе невозможен. Свободные колебания
любого осциллятора рано или поздно
затухают и прекращаются. Поэтому на
практике обычно имеют дело с затухающими
колебаниями. Они характеризуются тем,
что амплитуда колебаний A является
убывающей функцией. Обычно затухание
происходит под действием сил сопротивления
среды, наиболее часто выражаемых линейной
зависимостью от скорости колебаний

или
её квадрата.

Пускай
имеется система, состоящая из пружины
(подчиняющейся закону
Гука
), один конец которой жёстко
закреплён, а на другом находится тело
массой m. Колебания совершаются в
среде, где сила сопротивления
пропорциональна скорости с коэффициентом
c (см. вязкое
трение
).

Тогда
второй
закон Ньютона
для рассматриваемой
системы запишется так:

где
Fc — сила сопротивления,
Fy — сила упругости

Fc
= − cv, Fy = − kx, то
есть

ma + cv
+ kx = 0

или
в дифференциальной форме

где
k — коэффициент упругости в законе
Гука
, c — коэффициент
сопротивления, устанавливающий
соотношение между скоростью движения
грузика и возникающей при этом силой
сопротивления.

Для
упрощения вводятся следующие обозначения:

Величину
ω называют собственной частотой системы,
ζ — коэффициентом затухания.

Тогда
дифференциальное уравнение принимает
вид

Сделав
замену x = eλt,
получают характеристическое
уравнение

Корни
которого вычисляются по следующей
формуле

Частота математического маятника

Автор статьи

Виктор Матвеевич Скоков

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Замечание 1

Колебаниям математический маятника — тела с точечной массой, подвешенного на упругой нити — свойственен изохронизм. Это значит, что их частота не зависит от амплитуды и массы подвешенного тела. Такая система обладает свойствами гармонического осциллятора — устройства, график движения тела, в котором представляет собой синусоиду.

Функция, описывающая гармонические колебания:

$varphi (t) = varphi_0 cdot cos(omega_0 + alpha)$, где:

  • $ alpha$- начальная фаза колебаний,
  • $varphi_0$ — их амплитуда,
  • $omega_0$ — циклическая частота.

Циклическая частота связана с длиной подвеса математического маятника зависимостью:

$omega_0 = sqrt{frac{g}{l}}$,

где $g$ — ускорение свободного падения, $l$ — длина нити.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Эта зависимость получается исходя из того, что при малых отклонениях от вертикали касательную (тангенциальную) составляющую силы, тянущей маятник по дуге, можно найти как сумму векторов силы упругости нити (направлена от тела к центру вращения вдоль нити) и силы тяжести (направлена вертикально вниз). Ускорение, создаваемое касательной силой, относится к ускорению свободного падения в следующем соотношении:

$a = g cdot frac{x}{l}$,

где $l$ — длина нити, $x$ — модуль касательной силы.

Поскольку же уравнение колебательного движения выглядит как

$a = — omega_0^2 cdot x$,

где $omega_0$ — частота циклических колебаний, можно подставить в формулу для нахождения периода колебаний полученное соотношение:

$T = frac{2pi}{omega_0}; omega_0 = sqrt{frac{g}{l}} implies T = 2pi cdot sqrt{frac{l}{g}}$

Частоту можно найти как величину, обратную периоду.

$f = frac{1}{T}$

Пример 1

Найти частоту колебаний маятника с длиной подвеса 1 м.

$T = 2 cdot 3,14 cdot sqrt{frac{1}{9,8}} approx 2 с$.

$f = frac{1}{2} = 0,5$

Ответ: 0,5 колебаний в секунду.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Дата последнего обновления статьи: 22.04.2023

Похожие материалы по теме

Автор(ы):
Алексей Алексеевич Ивахно

Автор(ы):
Алексей . Малеев

Автор(ы):
Андрей Геннадьевич Блохин

Автор(ы):
Сергей Феликсович Савельев

Автор(ы):
Наталья Николаевна Пушкина

Решение любого учебного вопроса за 300

Циклическая частота колебаний

Мерой колебательного движения служит циклическая (или угловая, или круговая) частотой колебаний.

Это скалярная физическая величина.

Циклическая частота при гармонических колебаниях

Пусть колебания совершает материальная точка. При этом материальная точка через равные промежутки времени проходит через одно и то же положение.

Самыми простыми колебаниями являются гармонические колебания. Рассмотрим следующую кинематическую модель. Точка M с постоянной по модулю скоростью ($v$) движется по окружности радиуса A. В этом случае ее угловую скорость обозначим $<omega >_0$, эта скорость постоянна (рис.1).

Проекция точки $M$ на диаметр окружности (точка $N$), на ось X, выполняет колебания от $N_1$ до $N_2 $и обратно. Такое колебание N ,будет гармоническим. Для описания колебания точки N необходимо записать координату точки N, как функцию от времени ($t$). Пусть при $t=0$ радиус OM образует с осью X угол $<varphi >_0$. Через некоторый промежуток времени этот угол изменится на величину $<omega >_0t$ и будет равен $<omega >_0t+<varphi >_0$, тогда:

Выражение (1) является аналитической формой записи гармонического колебания точки N по диаметру $N_1N_2$.

Обратимся к выражению (1). Величина $A$ — это максимальное отклонение точки, совершающей колебания, от положения равновесия (точки О — центра окружности), называется амплитудой колебаний.

Параметр $<omega >_0$ — циклическая частота колебаний. $varphi =(<omega >_0t+<varphi >_0$) — фаза колебаний; $<varphi >_0$ — начальная фаза колебаний.

Циклическую частоту гармонических колебаний можно определить как частную производную от фазы колебаний по времени:

При $<varphi >_0=0$, уравнение колебаний (1) преобразуется к виду:

Если начальная фаза колебаний равна $<varphi >_0=frac<pi ><2>$ , то получим уравнение колебаний в виде:

Выражения (3) и (4) показывают, что при гармонических колебаниях абсцисса $x$ — это функция синус или косинус от времени. При графическом изображении гармонических колебаний получается косинусоида или синусоида. Форма кривой определена амплитудой колебаний и величиной циклической частоты. Положение кривой зависит от начальной фазы.

Циклическую частоту колебаний можно выразить через период (T) колебаний:

Циклическую частоту с частотой $?$$?$ свяжем выражением:

Единицей измерения циклической частоты в Международной системе единиц (СИ) является радиан, деленный на секунду:

Размерность циклической частоты:

Частные случаи формул для вычисления циклической частоты

Груз на пружине (пружинный маятник — идеальная модель) совершает гармонические колебания с круговой частотой равной:

$k$ — коэффициент упругости пружины; $m$ — масса груза на пружине.

Малые колебания физического маятника будут приблизительно гармоническими колебаниями с циклической частотой равной:

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние между центром масс маятника и точкой подвеса; $m$ — масса маятника.

Примером физического маятника является математический маятник. Круговая частота его колебаний равна:

где $l$ — длина подвеса.

Угловая частота затухающих колебаний находится как:

где $delta $ — коэффициент затухания; в случае с затуханием колебаний $<omega >_0$ называют собственной угловой частотой колебаний.

Примеры задач с решением

Задание: Чему равна циклическая частота гармонических колебаний, если максимальная скорость материальной точки равна $<dot>_=10 frac<см><с>$, а ее максимальное ускорение $<ddot>_=100 frac<см><с^2>$?

Решение: Основой решения задачи станет уравнение гармонических колебаний точки, так как из условий, очевидно, что они происходят по оси X:

Скорость колебаний найдем, используя уравнение (1.1) и кинематическую связь координаты $x$ и соответствующей компоненты скорости:

Максимальное значение скорости (амплитуда скорости) равна:

Ускорение точки вычислим как:

Из формулы (1.3) выразим амплитуду, подставим ее в (1.5), получим циклическую частоту:

Вычислим циклическую частоту:

Задание: На длинном невесомом стержне закреплены два груза одинаковой массы. Один груз находится на середине стержня, другой на его конце (рис.2). Система совершает колебания около горизонтальной оси, проходящей через свободный конец стрежня. Какова циклическая частота колебаний? Длина стержня равна $l$.

Решение: Основой для решения задачи является формула нахождения частоты колебаний физического маятника:

где $J$ — момент инерции маятника относительно оси вращения; $a$ — расстояние между центром масс маятника и точкой подвеса; $m$ — масса маятника. Масса маятника по условию задачи состоит из масс двух одинаковых шариков (масса одного шарика $frac<2>$). В нашем случае расстояние $a$ равно расстоянию между точками O и C (см. рис.2):

Найдем момент инерции системы из двух точечных масс. Относительно центра масс (если ось вращения провести через точку C), момент инерции системы ($J_0$) равен:

Момент инерции нашей системы относительно оси, проходящей через точку О найдем по теореме Штейнера:

Подставим правые части выражение (2.2) и (2.4) в (2.1) вместо соответствующих величин:

17. Механика Читать 0 мин.

17.547. Механические колебания

Колебания ― это процесс, при котором состояние системы изменяется, повторяясь во времени, и смещаясь то в одну, то в другую сторону относительно состояния равновесия.

Период ― это время, через которое повторяются показатели системы, т. е. система совершает одно полное колебание. Период изменяется в секундах.

Частота ― величина обратная периоду: число полных колебаний за единицу времени. Частота измеряется в герцах [Гц] = [c-1]. Частота равна v = $frac<1>$ , где

Если известно, что тело совершает N колебаний за время t, то частоту его колебаний можно определить как v = $frac$ , где

N ― количество колебаний;

Для описания колебательных систем, совершающих круговые процессы, удобно использовать круговую (циклическую) частоту. Циклическая частота показывает количество полных колебаний, которые происходят за 2π секунд и равна ω = 2πvили ω = $frac<2pi>$ , где

ω ― циклическая частота [рад/с];

Гармонические колебания ― колебания, в которых физические величины изменяются по закону синуса или косинуса. Кинематическое уравнение гармонических колебаний имеет вид:

ω ― циклическая частота [рад/с];

φ0 ― начальная фаза колебаний, [рад];

Смещение (x) ― это отклонение тела от положения равновесия. Смещение также является координатой тела, если отсчитывать ее от положения равновесия.

Амплитуда колебаний (A) ― максимальное отклонение колеблющейся величины от положения равновесия, т. е. максимальное смещение равно амплитуде колебаний xmax = A.

Начальная фаза колебаний (φ0) определяет смещение в начальный момент времени, выраженное в радианах.

Фаза колебаний (φ) или полная фаза колебаний, определяет смещение в данный момент времени, выраженное в радианах. Фаза колебаний равна φ = ωt + φ0, где

φ ― полная фаза колебаний [рад];

φ0 ― начальная фаза колебаний, [рад];

ω ― циклическая частота [рад/с];

Пример анализа гармонических колебаний точки

Рассмотрим гармонические колебания, в которых уравнение движения точки имеет вид x(t) = Asin(ωt), где

ω ― циклическая частота [рад/с].

Из уравнения x(t) = Asin(ωt) следует, что начального смещения нет (φ0 = 0) и колебания начинаются из положения равновесия. Смещение x достигает максимального значения xmax и равно амплитуде xmax = A, в тот момент, когда модуль синуса равен единице |sin(ωt)| = 1. Когда x = A фаза колебаний равна φ = $frac<pi> <2>+2pi n$ когда x = –A фаза колебаний принимает значения φ = $frac<3pi> <2>+2pi n$ , где n = 0, 1 , 2, … N.

График колебания координаты точки имеет вид:

Определим уравнение и график колебания скорости. Скорость ― это производная координаты по времени: v = xt‘, где

v ― скорость движения точки [м/с];

Так как закон изменения координаты нам известен x(t) = Asin(ωt), скорость движения колеблющейся точки: v = xt‘ = |Asin(ωt)|’t = Acos(ωt).

Уравнение скорости точки равно v(t) = Acos(ωt), где

v ― скорость движения точки [м/с];

ω ― циклическая частота [рад/с];

Сравнив уравнение v(t) = cos(ωt) с кинематическим уравнением гармонических колебаний, легко заметить, что ― амплитуда изменения скорости, а ωt ― фаза колебаний скорости. Таким образом, максимальное значение скорости равно vmax = , и оно достигается при | cos(ωt) | = 1, т. е. тогда, когда фаза колебаний скорости равна φ = πn, где n = 0, 1, 2, … N.

График колебания скорости точки имеет вид:

Аналогично определяются уравнение и график колебания ускорения точки, которая движется по гармоническому закону.

Ускорение ― это производная скорости по времени: a = vt‘, где

a ― ускорение движения точки [м/с2];

v ― скорость движения точки [м/с];

Так как закон изменения скорости был определен выше v(t) = cos(ωt), определим ускорения движения колеблющейся точки: a = vt‘ = [cos(ωt)]t‘ = –2sin(ωt).

Уравнение ускорения точки равно a(t) = –2sin(ωt), где

a ― ускорение движения точки [м/с2];

ω ― циклическая частота [рад/с];

Модуль ускорения точки максимален, когда |sin(ωt)| = 1 ― тогда же, когда достигает максимума смещение точки. Максимальное ускорение, т. е. амплитуда ускорения точки равна amax = 2.

График колебания ускорения точки имеет вид:

Во время гармонических колебаний, формы энергии колебательной системы все время находятся в процессе взаимной трансформации. В механической колебательной системе преобразуется механическая энергия: потенциальная энергия ― в кинетическую, а затем кинетическая энергия ― вновь в потенциальную. Полная механическая энергия колеблющейся системы постоянна, и в любой момент времени справедлив закон сохранения энергии E = + EK, где

E ― полная механическая энергия системы, E = const, [Дж];

― потенциальная энергия системы, изменяющаяся во времени, [Дж];

EK ― кинетическая энергия системы, изменяющаяся во времени, [Дж].

Рассмотрим изменение потенциальной энергии пружинного маятника, который колеблется по гармоническому уравнению x(t) = Asin(ωt).

Потенциальная энергия деформированной пружины равна = $frac<2>$ , где

― потенциальная энергия деформированной пружины, [Дж];

k ― коэффициент упругости пружины [Н/м];

x ― деформация пружины (величина ее удлинения или сжатия) [м].

У пружинного маятника деформация пружины ― переменная величина, которая зависит от времени. Кинематическое уравнение движения точки, принадлежащей этому маятнику ― x(t) = Asin(ωt). Следовательно, потенциальную энергию пружинного маятника можно записать как = $frac<2>$ = $frac<2>$ = $frac <2>cdot A^2 sin^2 (omega t)$ .

Уравнение потенциальной энергии пружинного маятника = $frac <2>cdot A^2 sin^2 (omega t)$ , где

― потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

ω ― циклическая частота [рад/с];

Амплитуда потенциальной энергии пружинного маятника равна EПmax = $frac<2>A^2$ , где

EПmax ― максимальная потенциальная энергия пружинного маятника, [Дж];

k ― коэффициент упругости пружины [Н/м];

Потенциальная энергия пружинного маятника равна нулю, когда sin(ωt) = 0 ― когда маятник проходит положение равновесия, и максимальна, когда sin(ωt) = 1 ― когда маятник находится в крайних положениях, т. е. когда его смещение равно амплитуде.

График колебаний потенциальной энергии пружинного маятника:

Рассмотрим изменение кинетической энергии маятника. Кинетическая энергия тела равна = $frac<2>$ , где

― кинетическая энергия тела, [Дж];

v ― скорость движения тела, [м/с].

У тела, которое совершает колебательные движения, скорость ― переменная величина.

Выше было показано, что если уравнение движения точки имеет вид x(t) = Asin(ωt), то уравнение скорости точки v(t) = cos(ωt). Таким образом, кинетическая энергия маятника равна = $frac<2>$ = $frac <2>cdot (Aomegacos(omega t))^2$ = $frac <2>cdot A^2 omega^2 cos^2 (omega t)$ .

Уравнение кинетической энергии маятника = $frac <2>cdot A^2 omega^2 cos^2 (omega t)$ , где

― кинетическая энергия маятника, [Дж];

ω ― циклическая частота [рад/с];

Амплитуда кинетической энергии маятника равна EКmax = $frac <2>cdot A^2 omega^2$ , где

EКmax ― максимальная кинетическая энергия маятника, [Дж];

ω ― циклическая частота [рад/с].

Максимальная кинетическая энергия маятника достигается тогда, когда cos2(ωt) = 1 ― маятник проходит положение равновесия, и она равна нулю, когда маятник находится в крайнем положении.

График колебаний кинетической энергии маятника:

Математический маятник ― это колебательная система, состоящая из материальной точки, подвешенной на нерастяжимой нити или стержне.

Период колебаний математического маятника равен T = $2pi sqrt<frac>$ , где

l ― длина нити математического маятника [м];

g ― ускорение свободного падения [м/с2].

Период колебаний пружинного маятника равен T = $2pi sqrt<frac>$ , где

Существует особый тип колебаний ― вынужденные колебания. Вынужденные колебания происходят только под постоянным периодическим внешним воздействием и их характеристики зависят от характеристик этого воздействия.

Если частота внешнего воздействия, которое вызывает вынужденные колебания, совпадает с собственной внутренней частотой колебательной системы ― возникает явление резонанса. При резонансе резко возрастает амплитуда колебаний системы. Частота, при которой возникает явление резонанса, называется резонансной частотой.

На рисунке показан график резонансной кривой ― увеличение амплитуды при совпадении частоты внешнего воздействия с внутренней частотой системы.

Механические колебания.

Автор — профессиональный репетитор, автор учебных пособий для подготовки к ЕГЭ Игорь Вячеславович Яковлев

Темы кодификатора ЕГЭ : гармонические колебания; амплитуда, период, частота, фаза колебаний; свободные колебания, вынужденные колебания, резонанс.

Колебания — это повторяющиеся во времени изменения состояния системы. Понятие колебаний охватывает очень широкий круг явлений.

Колебания механических систем, или механические колебания — это механическое движение тела или системы тел, которое обладает повторяемостью во времени и происходит в окрестности положения равновесия. Положением равновесия называется такое состояние системы, в котором она может оставаться сколь угодно долго, не испытывая внешних воздействий.

Например, если маятник отклонить и отпустить, то начнутся колебания. Положение равновесия — это положение маятника при отсутствии отклонения. В этом положении маятник, если его не трогать, может пребывать сколь угодно долго. При колебаниях маятник много раз проходит положение равновесия.

Сразу после того, как отклонённый маятник отпустили, он начал двигаться, прошёл положение равновесия, достиг противоположного крайнего положения, на мгновение остановился в нём, двинулся в обратном направлении, снова прошёл положение равновесия и вернулся назад. Совершилось одно полное колебание. Дальше этот процесс будет периодически повторяться.

Амплитуда колебаний тела — это величина его наибольшего отклонения от положения равновесия.

Период колебаний — это время одного полного колебания. Можно сказать, что за период тело проходит путь в четыре амплитуды.

Частота колебаний — это величина, обратная периоду: . Частота измеряется в герцах (Гц) и показывает, сколько полных колебаний совершается за одну секунду.

Гармонические колебания.

Будем считать, что положение колеблющегося тела определяется одной-единственной координатой . Положению равновесия отвечает значение . Основная задача механики в данном случае состоит в нахождении функции , дающей координату тела в любой момент времени.

Для математического описания колебаний естественно использовать периодические функции. Таких функций много, но две из них — синус и косинус — являются самыми важными. У них много хороших свойств, и они тесно связаны с широким кругом физических явлений.

Поскольку функции синус и косинус получаются друг из друга сдвигом аргумента на , можно ограничиться только одной из них. Мы для определённости будем использовать косинус.

Гармонические колебания — это колебания, при которых координата зависит от времени по гармоническому закону:

Выясним смысл входящих в эту формулу величин.

Положительная величина является наибольшим по модулю значением координаты (так как максимальное значение модуля косинуса равно единице), т. е. наибольшим отклонением от положения равновесия. Поэтому — амплитуда колебаний.

Аргумент косинуса называется фазой колебаний. Величина , равная значению фазы при , называется начальной фазой. Начальная фаза отвечает начальной координате тела: .

Величина называется циклической частотой. Найдём её связь с периодом колебаний и частотой . Одному полному колебанию отвечает приращение фазы, равное радиан: , откуда

Измеряется циклическая частота в рад/с (радиан в секунду).

В соответствии с выражениями (2) и (3) получаем ещё две формы записи гармонического закона (1) :

График функции (1) , выражающей зависимость координаты от времени при гармонических колебаниях, приведён на рис. 1 .

Рис. 1. График гармонических колебаний

Гармонический закон вида (1) носит самый общий характер. Он отвечает, например, ситуации, когда с маятником совершили одновременно два начальных действия: отклонили на величину и придали ему некоторую начальную скорость. Имеются два важных частных случая, когда одно из этих действий не совершалось.

Пусть маятник отклонили, но начальной скорости не сообщали (отпустили без начальной скорости). Ясно, что в этом случае , поэтому можно положить . Мы получаем закон косинуса:

График гармонических колебаний в этом случае представлен на рис. 2 .

Рис. 2. Закон косинуса

Допустим теперь, что маятник не отклоняли, но ударом сообщили ему начальную скорость из положения равновесия. В этом случае , так что можно положить . Получаем закон синуса:

График колебаний представлен на рис. 3 .

Рис. 3. Закон синуса

Уравнение гармонических колебаний.

Вернёмся к общему гармоническому закону (1) . Дифференцируем это равенство:

Теперь дифференцируем полученное равенство (4) :

Давайте сопоставим выражение (1) для координаты и выражение (5) для проекции ускорения. Мы видим, что проекция ускорения отличается от координаты лишь множителем :

Это соотношение называется уравнением гармонических колебаний. Его можно переписать и в таком виде:

C математической точки зрения уравнение (7) является дифференциальным уравнением. Решениями дифференциальных уравнений служат функции (а не числа, как в обычной алгебре).
Так вот, можно доказать, что:

-решением уравнения (7) является всякая функция вида (1) с произвольными ;

-никакая другая функция решением данного уравнения не является.

Иными словами, соотношения (6) , (7) описывают гармонические колебания с циклической частотой и только их. Две константы определяются из начальных условий — по начальным значениям координаты и скорости.

Пружинный маятник.

Пружинный маятник — это закреплённый на пружине груз, способный совершать колебания в горизонтальном или вертикальном направлении.

Найдём период малых горизонтальных колебаний пружинного маятника (рис. 4 ). Колебания будут малыми, если величина деформации пружины много меньше её размеров. При малых деформациях мы можем пользоваться законом Гука. Это приведёт к тому, что колебания окажутся гармоническими.

Трением пренебрегаем. Груз имеет массу , жёсткость пружины равна .

Координате отвечает положение равновесия, в котором пружина не деформирована. Следовательно, величина деформации пружины равна модулю координаты груза.

Рис. 4. Пружинный маятник

В горизонтальном направлении на груз действует только сила упругости со стороны пружины. Второй закон Ньютона для груза в проекции на ось имеет вид:

Если 0′ alt=’x>0′ /> (груз смещён вправо, как на рисунке), то сила упругости направлена в противоположную сторону, и . Наоборот, если , то 0′ alt=’F_>0′ /> . Знаки и всё время противоположны, поэтому закон Гука можно записать так:

Тогда соотношение (8) принимает вид:

Мы получили уравнение гармонических колебаний вида (6) , в котором

Циклическая частота колебаний пружинного маятника, таким образом, равна:

Отсюда и из соотношения находим период горизонтальных колебаний пружинного маятника:

Если подвесить груз на пружине, то получится пружинный маятник, совершающий колебания в вертикальном направлении. Можно показать, что и в этом случае для периода колебаний справедлива формула (10) .

Математический маятник.

Математический маятник — это небольшое тело, подвешенное на невесомой нерастяжимой нити (рис. 5 ). Математический маятник может совершать колебания в вертикальной плоскости в поле силы тяжести.

Рис. 5. Математический маятник

Найдём период малых колебаний математического маятника. Длина нити равна . Сопротивлением воздуха пренебрегаем.

Запишем для маятника второй закон Ньютона:

и спроектируем его на ось :

Если маятник занимает положение как на рисунке (т. е. 0′ alt=’x>0′ /> ), то:

Если же маятник находится по другую сторону от положения равновесия (т. е. ), то:

Итак, при любом положении маятника имеем:

Когда маятник покоится в положении равновесия, выполнено равенство . При малых колебаниях, когда отклонения маятника от положения равновесия малы (по сравнению с длиной нити), выполнено приближённое равенство . Воспользуемся им в формуле (11) :

Это — уравнение гармонических колебаний вида (6) , в котором

Следовательно, циклическая частота колебаний математического маятника равна:

Отсюда период колебаний математического маятника:

Обратите внимание, что в формулу (13) не входит масса груза. В отличие от пружинного маятника, период колебаний математического маятника не зависит от его массы.

Свободные и вынужденные колебания.

Говорят, что система совершает свободные колебания, если она однократно выведена из положения равновесия и в дальнейшем предоставлена сама себе. Никаких периодических внешних
воздействий система при этом не испытывает, и никаких внутренних источников энергии, поддерживающих колебания, в системе нет.

Рассмотренные выше колебания пружинного и математического маятников являются примерами свободных колебаний.

Частота, с которой совершаются свободные колебания, называется собственной частотой колебательной системы. Так, формулы (9) и (12) дают собственные (циклические) частоты колебаний пружинного и математического маятников.

В идеализированной ситуации при отсутствии трения свободные колебания являются незатухающими, т. е. имеют постоянную амплитуду и длятся неограниченно долго. В реальных колебательных системах всегда присутствует трение, поэтому свободные колебания постепенно затухают (рис. 6 ).

Рис. 6. Затухающие колебания

Вынужденные колебания — это колебания, совершаемые системой под воздействием внешней силы , периодически изменяющейся во времени (так называемой вынуждающей силы).

Предположим, что собственная частота колебаний системы равна , а вынуждающая сила зависит от времени по гармоническому закону:

В течение некоторого времени происходит установление вынужденных колебаний: система совершает сложное движение, которое является наложением выужденных и свободных колебаний. Свободные колебания постепенно затухают, и в установившемся режиме система совершает вынужденные колебания, которые также оказываются гармоническими. Частота установившихся вынужденных колебаний совпадает с частотой
вынуждающей силы (внешняя сила как бы навязывает системе свою частоту).

Амплитуда установившихся вынужденных колебаний зависит от частоты вынуждающей силы. График этой зависимости показан на рис. 7 .

Рис. 7. Резонанс

Мы видим, что вблизи частоты наступает резонанс — явление возрастания амплитуды вынужденных колебаний. Резонансная частота приближённо равна собственной частоте колебаний системы: , и это равенство выполняется тем точнее, чем меньше трение в системе. При отсутствии трения резонансная частота совпадает с собственной частотой колебаний, , а амплитуда колебаний возрастает до бесконечности при .

источники:

http://reshutest.ru/theory/13?theory_id=334

http://ege-study.ru/ru/ege/materialy/fizika/mexanicheskie-kolebaniya/

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Гта вайс сити как найти танк
  • Как найти девушку по имени рядом
  • Как найти грамматические основы в пословицах
  • Как найти слово в списке файлов
  • Как найти процентное содержание крахмала в картофеле

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии