Как найти центральную линию треугольника

Как найти среднюю линию треугольника?

О чем эта статья:

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат (в правом нижнем углу экрана).

Понятие треугольника

Треугольник — это геометрическая фигура, которая получилась из трех отрезков. Их соединили тремя точками, которые не лежат на одной прямой. Отрезки принято называть сторонами, а точки — вершинами.

  • Прямоугольный. Один угол прямой, то есть равен 90 градусам, два других меньше 90 градусов.
  • Остроугольный. Градусная мера всех углов больше 0, но меньше 90 градусов.
  • Тупоугольный. Один угол тупой, два других — острые.

Треугольник считают равнобедренным, если две его стороны равны. Эти стороны называют боковыми сторонами, а третью — основанием.

Треугольник, у которого все стороны равны, называется равносторонним или правильным.

Треугольник называется прямоугольным, если у него есть прямой угол, то есть угол в 90°. Сторона прямоугольного треугольника, которая лежит напротив прямого угла — гипотенуза, а две другие стороны — катеты.

Правильный (равносторонний или равноугольный) треугольник — это правильный многоугольник, в котором все стороны равны между собой, все углы также равны и составляют 60°. В равностороннем треугольнике высота является и биссектрисой, и медианой.

Свойства треугольников:

  • В треугольнике против большего угла лежит большая сторона — и наоборот.
  • Сумма углов треугольника равна 180 градусов.
  • Все углы равностороннего треугольника равны 60 градусам.
  • В прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов.

Нужно быстро привести знания в порядок перед экзаменом? Записывайтесь на курсы ЕГЭ по математике в Skysmart!

Понятие средней линии треугольника

Определение средней линии треугольника подходит для любого вида этой фигуры.

​Средняя линия треугольника — отрезок, который соединяет середины двух сторон. В любом треугольнике можно провести три средних линии.

​Основанием считается сторона, которой параллельна средняя линия.

Как найти среднюю линию треугольника — расскажем дальше, а для начала еще немного разберемся со всеми определениями.

Понятие средней линии прямоугольного треугольника

Математики говорят: в любом треугольнике можно провести три средних линии. В прямоугольном треугольнике этот отрезок будет равен половине основания — это и есть формула средней линии прямоугольного треугольника.

Прямой угол помогает нам применить другие признаки равенства и подобия. Для углов в прямоугольном треугольнике можно использовать геометрические тождества без дополнительных построений, а любую из сторон можно найти по теореме Пифагора.

В прямоугольном треугольнике две средние линии перпендикулярны катетам, а третья равна медиане, проведенной к гипотенузе. Средние линии острого и разностороннего треугольника не обладают подобными свойствами.

Свойства средней линии треугольника

Признак средней линии треугольника: если отрезок в треугольнике проходит через середину одной из его сторон, пересекает вторую и параллелен третьей — этот отрезок можно назвать средней линией этого треугольника.

Свойства:

  1. Средняя линия равна половине длины основания и параллельна ему.
  2. Средняя линия отсекает треугольник, подобный данному с коэффициентом 1/2; его площадь равна четверти площади данного.
  3. Три средние линии разделяют исходную фигуру на четыре равных треугольника. Центральный из них называют дополнительным.
  4. Три средние линии разделяют исходный прямоугольный треугольник на четыре равных прямоугольных треугольника.

Теорема о средней линии треугольника

Теорема о средней линии треугольника звучит так:

Средняя линия треугольника параллельна основанию и равна его половине. А так выглядит формула нахождения средней линии треугольника:

Докажем теорему:

По условию нам дано, что MA = MB, NA = NC

Рассмотрим два образовавшихся треугольника ΔAMN и ΔABC.

(по второму признаку подобия треугольников).

△ABC, то Следовательно, ВС = 2МN. Значит, доказано, что средняя линия равна половине основания.

△ABC, то ∠1 = ∠2 . Так как ∠1 и ∠2 — соответственные углы, то по признаку параллельности прямых MN || BC.

Параллельность средней линии и соответствующего ей основания доказана.

Пример 1. В треугольнике ΔABC AB = 8, BC = 7, CA = 5, точки M, K, N — середины сторон AB, BC, CA соответственно. Найти периметр ΔMNK.

Соединим середины сторон треугольника ΔABC и получим его средние линии, которые образуют треугольник ΔMNK. Найдем их длины по теореме о средней линии:

Ответ: периметр треугольника ΔMNK равен 10.

Пример 2. В прямоугольном треугольнике АВС есть две средние линии: MN и NP, равные 3 и 4 соответственно. Найти площадь большого прямоугольного треугольника.

Площадь треугольника равна половине произведения основания на высоту. Так как треугольник прямоугольный, то его площадь найдем как половину произведения катетов:

Так как MN — средняя линия, то по теореме о средней линии она равна половине катета AC:

Значит, AC = 2MN = 2 × 3 = 6.

Так как NP — средняя линия, то по теореме о средней линии она равна половине катета BC:

Значит, BC = 2NP = 2 × 4 = 8.

Тогда найдем площадь большого треугольника, используя формулу, указанную выше:

S = ½ × 6 × 8 = ½ × 48 = 24.

Ответ: площадь большого прямоугольного треугольника равна 24.

Средняя линия треугольника — свойства, признаки и формулы

Одним из важных понятий, с помощью которого легко решается целый класс задач по геометрии, является средняя линия треугольника.

Разберём данное понятие, рассмотрим свойства, и научимся правильно решать задачи на эту тему.

Определение и признаки средней линии треугольника

Отрезок, соединяющий середины двух сторон треугольника, называется его средней линией.

Отрезок, у которого один из концов совпадает с серединой одной из сторон, другой находится на второй стороне, проведённый параллельно третьей стороне, является средней линией треугольника.

Доказательство следует из теоремы Фалеса.

Теорема о средней линии треугольника

Средняя линия треугольника параллельна основанию (третьей стороне) и равна её половине.

Существует три вида доказательств этого положения. Каждое из них базируется на одной из ключевых позиций планиметрии.

Пусть дан треугольник ABC, M – середина стороны AB, N – середина BC.

По определению, MN – средняя линия ΔABC.

Необходимо доказать, что MN II AC, MN = ½AC.

Доказательства

Пусть прямая MK II AC. Тогда по теореме Фалеса MK пересекает сторону BC в её середине. В этом случае отрезок MN лежит на прямой MK.

Следовательно, MN II AC.

Тогда NP – средняя линия по теореме Фалеса, то есть AP = PC.

Так как AMNP – параллелограмм по определению, то AP = MN. Из этого и предыдущего утверждения следует, что длина MN равна ½AC.

Рассматриваются треугольники MBN и ABC. В них угол B является общим,

По второму признаку подобия треугольников ΔMBN ∼ ΔABC. Следовательно, углы BMN и BAC равны.

Поскольку эти углы являются соответственными, то прямые MN и AC параллельны.

Формула MN = ½AC следует из условий

поскольку пропорциональность двух пар сторон влечёт соответствующее отношение для третьей пары сторон.

Рассматривается сумма векторов

Поскольку в результате образуется замкнутая ломаная, то

Отсюда следует, что

Из последнего равенства следуют условия теоремы.

Следствия из теоремы с доказательствами

Следствие №1

Средняя линия отсекает треугольник, подобный данному, с коэффициентом подобия ½ и площадью, составляющий ¼ площади заданного треугольника.

По определению стороны AB и BC делятся пополам, поэтому

Из третьего признака подобия вытекает рассматриваемое свойство.

Поскольку площади подобных фигур относятся как квадрат коэффициента подобия, то получается вторая часть свойства, то есть площадь маленького треугольника относится к площади большого как

Следствие №2

Поскольку MN – средняя линия, то MN II AC, поэтому ∠BMN = ∠BAP, ∠BNM = ∠BCA как соответственные при MN II AC и секущей AB или BC соответственно.

Поскольку MP – средняя линия, то MP II BC, поэтому ∠MPA = ∠BCA как соответственные при MP II BC и секущей AC.

Таким образом: ∠BNM = ∠BCA = ∠MPA.

Так как MN – средняя линия, то сторона MN = ½AC, поэтому MN = AP.

Следовательно, ΔAMP = ΔMBN по второму признаку равенства треугольников.

Равенство остальных пар треугольников доказывается аналогично.

По основному свойству ΔMBN ∼ ΔABC с коэффициентом подобия ½. Так как все полученные маленькие треугольники равны между собой, то каждый из них, следовательно, подобен большому с тем же коэффициентом.

Свойства средней линии треугольника

Теорема и следствия из неё составляют основные свойства средней линии треугольника.

Согласно второму утверждению, вид большого треугольника такой же, как и у маленьких. То есть для равностороннего и равнобедренного треугольников средние линии отсекают равносторонние и равнобедренные треугольники.

Высоты тупоугольного треугольника, проведённые к тупому углу из вершин острых, располагаются вне треугольника. Поэтому часто рассматривают не саму среднюю линию, а её продолжение. Учитывая подобие получаемых фигур, можно утверждать, что точкой пересечения с продолжением средней линии высота делится на две равные части.

Биссектриса угла треугольника точкой пересечения со средней линией также делится пополам.

Средняя линия прямоугольного треугольника

Для прямоугольного треугольника две средние линии перпендикулярны катетам, а третья равна медиане, проведённой к гипотенузе.

Остроугольный разносторонний треугольник не имеет средних линий, обладающих подобными характеристиками.

Пример решения задачи

Доказать, что середины сторон произвольного выпуклого четырёхугольника являются вершинами параллелограмма.

Проводя диагональ четырёхугольника, получают разбиение на два треугольника, в каждом из которых построена средняя линия, параллельная по основной теореме диагонали, как основанию.

Так как две прямые, параллельные третьей, параллельны между собой, то противолежащие стороны образованного средними линиями четырёхугольника параллельны.

Аналогично доказывается параллельность двух других сторон нового четырёхугольника. По определению четырёхугольник, полученный соединением середин сторон заданного четырёхугольника, является параллелограммом.

Что такое средняя линия треугольника

В данной публикации мы рассмотрим определение, свойства и признак средней линии треугольника, а также разберем пример решения задачи для лучшего понимания теоретического материала.

Определение средней линии треугольника

Отрезок, который соединяет середины двух сторон треугольника, называется его средней линией.

  • KL – средняя линия треугольника ABC
  • K – середина стороны AB: AK = KB
  • L – середина стороны BC: BL = LC

Свойства средней линии треугольника

Свойство 1

Средняя линия треугольника параллельна одной из его сторон (которую не пересекает) и в два раза меньше этой стороны.

На рисунке выше:

Свойство 2

Средняя линия треугольника отсекает от него подобный треугольник (в соотношении 1:2), площадь которого в 4 раза меньше исходного.

На рисунке выше:

  • △KBL ∼ △ABC (подобие по пропорциональности всех сторон)
  • Стороны △KBL в два раза меньше соответствующих сторон △ABC:
    AB = 2KB, BC = 2BL, AC = 2KL
    .
  • S△ABC = 4 ⋅ S△KBL

Свойство 3

В любом треугольнике можно провести три средние линии.

KL, KM и ML – средние линии треугольника ABC.

Свойство 4

Три средние линии треугольника делят его на 4 равных по площади треугольника.

Признак средней линии треугольника

Отрезок, проходящий через середину одной из сторон треугольника, пресекающий вторую и параллельный третьей стороне, является средней линией этого треугольника.

Пример задачи

Дан треугольник, две стороны которого равны 6 и 8 см. Найдите длину средней линии, соединяющей эти стороны.

Треугольник с заданными сторонами является прямоугольным, причем известные значения – это длины катетов. Средняя линия, которая соединяет катеты, параллельна гипотенузе и равна половине ее длины.

Мы можем найти гипотенузу, воспользовавшись теоремой Пифагора.

BC 2 = AB 2 + AC 2 = 6 2 + 8 2 = 100.
BC = 10.

Таким образом, средняя линия LM = 1 /2 ⋅ BC = 1 /2 ⋅ 10 = 5.

источники:

http://nauka.club/matematika/geometriya/srednyaya-liniya-treugolnika.html

Что такое средняя линия треугольника

В геометрии, центральные линии представляют собой определенные специальные прямые линии, лежащие в плоскости плоскости треугольника . Особое свойство, которое отличает прямую линию от центральной линии, проявляется через уравнение линии в трилинейных координатах. Это специальное свойство также связано с концепцией центра треугольника . Концепция центральной линии была введена Кларком Кимберлингом в статье, опубликованной в 1994 году.

Содержание

  • 1 Определение
  • 2 Центральные линии как трилинейные полярные поля
  • 3 Построение центральных линий
  • 4 Некоторые названные центральные линии
    • 4.1 Центральная линия, связанная с X 1, центр: антиортная ось
    • 4.2 Центральная линия, связанная с X 2, центроид: Ось Лемуана
    • 4.3 Центральная линия, связанная с X 3, центр описанной окружности: Ортическая ось
    • 4.4 Центральная линия, связанная с X 4, ортоцентр
    • 4.5 Центральная линия, связанная с X 5, центр из девяти точек
    • 4.6 Центральная линия, связанная с X 6, симедианная точка: Линия на бесконечности
  • 5 Еще несколько названных центральных линий
    • 5.1 Линия Эйлера
    • 5.2 Линия Нагеля
    • 5.3 Ось Брокара
  • 6 См. Также
  • 7 Ссылки

Определение

Пусть ABC будет плоским треугольником и пусть (x: y: z) — трилинейные координаты произвольной точки плоскости треугольника ABC.

Прямая линия в плоскости треугольника ABC, уравнение которой в трилинейных координатах имеет вид

f (a, b, c) x + g (a, b, c) y + h (a, b, c) z = 0

, где точка с трилинейными координатами (f (a, b, c): g (a, b, c): h (a, b, c)) является центром треугольника, является центральная линия в плоскости треугольника ABC относительно треугольника ABC.

Центральные линии как трилинейные поляры

Геометрическая связь между центральной линией и связанным с ней центром треугольника может быть выражена с помощью понятий трилинейных поляр и изогонально сопряженных.

Пусть X = (u (a, b, c): v (a, b, c): w (a, b, c)) — центр треугольника. Строка, уравнение которой имеет вид

x / u (a, b, c) + y / v (a, b, c) y + z / w (a, b, c) = 0

, является трилинейная полярная центра треугольника X. Также точка Y = (1 / u (a, b, c): 1 / v (a, b, c): 1 / w ( a, b, c)) представляет собой изогонально сопряженное центра треугольника X.

Таким образом, центральная линия, заданная уравнением

f (a, b, c) x + g (a, b, c) y + h (a, b, c) z = 0

— трилинейная поляра изогонально сопряженного центра треугольника (f (a, b, c): g (a, б, в): з (а, б, в)).

Построение центральных прямых

Построение центральных линий.svg

Пусть X — любой треугольник с центром треугольника ABC.

  • Нарисуйте линии AX, BX и CX и их отражения во внутренних биссектрисах углов в вершинах A, B, C соответственно.
  • Отраженные линии совпадают, а точка совпадения — изогональная сопряжены Y с X.
  • Пусть чевианы AY, BY, CY пересекаются с противоположными сторонами треугольника ABC в точках A ‘, B’, C ‘соответственно. Треугольник A’B’C ‘- это чевианский треугольник Y.
  • Треугольник ABC и чевианский треугольник A’B’C’ находятся в перспективе, и пусть DEF будет осью перспективности двух треугольников. Линия DEF является трилинейной полярной точкой Y. Линия DEF является центральной линией, связанной с центром треугольника X.

Некоторые именованные центральные линии

Пусть X n будет Центр n-го треугольника в энциклопедии центров треугольников Кларка Кимберлинга . Центральная линия, связанная с X n, обозначена L n. Некоторые из названных центральных линий приведены ниже.

Антиортная ось как ось перспективы треугольника ABC и его эксцентрального треугольника.

Центральная линия, связанная с X 1, центр: антиортная ось

Центральная линия, связанная с инцентр X1= (1: 1: 1) (также обозначается I) равен

x + y + z = 0.

Эта линия является антиортальной осью треугольник ABC.

  • Изогональное сопряжение внутреннего центра треугольника ABC — это сам центр. Таким образом, антиортальная ось, которая является центральной линией, связанной с центром в центре, является осью перспективности треугольника ABC и его центральным треугольником (чевианский треугольник центра треугольника ABC).
  • Антиортальная ось треугольника ABC — это ось перспективы треугольника ABC и эксцентрального треугольника I1I2I3треугольника ABC.
  • Треугольник, стороны которого касаются внешне к вневписанным окружностям треугольника ABC — это треугольник, внепеченный к треугольнику ABC. Треугольник ABC и его продолговатый треугольник находятся в перспективе, а ось перспективы является антиортной осью треугольника ABC.

Lemoine Axis.svg

Центральная линия, связанная с X 2, центроид: ось Лемуана

Трилинейные координаты центроида X2(также обозначенного G) треугольника ABC равны (1 / a: 1 / b: 1 / c). Таким образом, центральная линия, связанная с центроидом, — это линия, трилинейное уравнение которой равно

x / a + y / b + z / c = 0.

Эта линия является осью Лемуана, также называемой линия Лемуана треугольника ABC.

  • Изогональное сопряжение центроида X 2 представляет собой симедианную точку X6(также обозначенную K), имеющую трилинейные координаты (a: b: c). Таким образом, ось Лемуана треугольника ABC является трилинейной полярной симметричной точки треугольника ABC.
  • касательный треугольник треугольника ABC — это треугольник T ATBTC, образованный касательными к описанная окружность треугольника ABC в его вершинах. Треугольник ABC и его тангенциальный треугольник находятся в перспективе, а ось перспективы — это ось Лемуана треугольника ABC.

Центральная линия, связанная с X 3, центр описанной окружности: Ортическая ось

Orthic Axis.svg

Трилинейные координаты центр описанной окружности X3(также обозначаемый O) треугольника ABC равен (cos A: cos B: cos C). Таким образом, центральная линия, связанная с центром описанной окружности, является линией, трилинейное уравнение которой равно

x cos A + y cos B + z cos C = 0.

Эта линия является ортоосью треугольника ABC..

  • Изогональное сопряжение центра описанной окружности X 6 является ортоцентром X4(также обозначается H), имеющим трилинейные координаты (сек A: сек B: сек C). Таким образом, ортическая ось треугольника ABC является трилинейной полярной ортоцентром треугольника ABC. Ортическая ось треугольника ABC — это ось перспективы треугольника ABC и его ортогонального треугольника H AHBHC.

Центральная линия, связанная с X 4, ортоцентр

Центральная линия orhocenter.svg

Трехлинейные координаты ортоцентра X4(также обозначается H) треугольника ABC (сек A: сек B: сек C). Таким образом, центральная линия, связанная с центром описанной окружности, — это линия, трилинейное уравнение которой имеет вид

x sec A + y sec B + z sec C = 0.
  • Изогональное сопряжение ортоцентра треугольника является центром описанной окружности треугольника.. Таким образом, центральная линия, связанная с ортоцентром, является трилинейной полярной точкой центра описанной окружности.

Центральная линия, связанная с X 5, центр девяти точек

Kosnita point.svg

Трилинейные координаты девяти точек. центр точки X5(также обозначаемый N) треугольника ABC равен (cos (B — C): cos (C — A): cos (A — B)). Таким образом, центральная линия, связанная с центром из девяти точек, — это линия, трилинейное уравнение которой равно

x cos (B — C) + y cos (C — A) + z cos (A — B) = 0.
  • Изогонально сопряженным девятиточному центру треугольника ABC является точка Косницы X54треугольника ABC. Таким образом, центральная линия, связанная с центром из девяти точек, является трилинейной полярной точкой Косницы.
  • Точка Косница строится следующим образом. Пусть O — центр описанной окружности треугольника ABC. Пусть O A, O B, O C — центры описанной окружности треугольников BOC, COA, AOB соответственно. Линии AO A, BO B, CO C являются параллельными, а точкой совпадения является точка Косницы треугольника ABC. Название принадлежит Дж. Ригби.

Центральная линия, связанная с X 6, симедианная точка: Линия на бесконечности

Линия на бесконечности.svg

Трилинейные координаты симедианной точки X6(также обозначаются по K) треугольника ABC равны (a: b: c). Таким образом, центральная линия, связанная с точкой симедианы, — это линия, трилинейное уравнение которой имеет вид

ax + by + cz = 0.
  • Эта линия является бесконечно удаленной линией в плоскости треугольника ABC.
  • Изогонально сопряженная точка симедианы треугольника ABC является центроидом треугольника ABC. Следовательно, центральная линия, связанная с точкой симедианы, является трилинейной полярной точкой центроида. Это ось перспективы треугольника ABC и его средний треугольник.

Некоторые другие названные центральные линии

линия Эйлера

линия Эйлера треугольника ABC — это линия, проходящая через центроид, центр описанной окружности, ортоцентр и центр из девяти точек треугольника ABC. Трилинейное уравнение линии Эйлера:

x sin 2A sin (B — C) + y sin 2B sin (C — A) + z sin 2C sin (C — A) = 0.

Это центральный Линия, связанная с центром треугольника X 647.

Линия Нагеля

Линия Нагеля треугольника ABC — это линия, проходящая через центр тяжести, центр тяжести, центр Шпикера и Точка Нагеля треугольника ABC. Трилинейное уравнение линии Нагеля:

xa (b — c) + yb (c — a) + zc (a — b) = 0.

Это центральная линия, связанная с центром треугольника X 649.

Ось Брокара

Ось Брокара треугольника ABC — это прямая, проходящая через центр описанной окружности и симедианную точку треугольника ABC. Его трилинейное уравнение:

x sin (B — C) + y sin (C — A) + z sin (A — B) = 0.

Это центральная линия, связанная с центром треугольника X 523.

См. Также

Ссылки

Для определения средней линии, и ее длины, вам нужно взять и разделить ту линию которой она параллельна, на два, на картинке как вы видите этой линией является АС. А средней линией МК, которая и есть по своей длине, не что иное, как половина линии АС.

автор вопроса выбрал этот ответ лучшим

Kriso­nerrr
[647]

8 лет назад 

Для этого существует теорема о средней линии треугольника: средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны. То есть, тебе будет достаточно знать длину третьей стороны, что бы найти среднюю линию треугольника.

-Irink­a-
[282K]

4 года назад 

Средняя линия треугольника — это линия, отрезок, который соединяет две стороны треугольника в их серединах.

При этом средняя линия треугольника всегда параллельна третьей стороне и равна 1/2 её длины.

Для того, чтобы найти длину средней линии нужно знать длину 3-ей параллельной линии и разделить её пополам.

morel­juba
[62.5K]

6 лет назад 

Средняя линия треугольника по определению выступает в роли прямой, которая параллельна одной из его сторон и в свою же очередь равно половине той стороны, которой она и параллельна. Чтобы определить среднюю линию вам надо поделить параллельную сторону треугольника на 2.

Alexg­roovy
[14.6K]

5 лет назад 

По определению средняя линия является отрезком, соединяющим 2 стороны треугольника. При этом она параллельна третьей стороне и ее длина равняется ее половине.

Для треугольника ABC:

Длина средней линии MN находится так:

Птичк­а2014
[25.4K]

6 лет назад 

Средняя длина треугольника найти очень легко. Она равна половине основания, которому параллельна. Так что рассчитать ее очень легко — надо основание поделить на два и это получится средняя длина треугольника.

Nelli­4ka
[114K]

5 лет назад 

Поможет в решении задачи свойство самой средней линии.

Так, она соединяет середины двух сторон, при этом являясь параллельным отрезком по отношению к третьей стороне. Но и это еще не все: средняя линия по длине равна половине третьей стороны, которой она параллельна.

Для этой теории есть свое доказательство:

Нам же останется только узнать, чему равна третья сторона, и поделить найденное значение пополам.

Кстати, за третью сторону по умолчанию берут основание треугольника.

Fanto­meRU
[13.3K]

5 лет назад 

Средняя линия треугольника по определению — это отрезок, соединяющий середины двух сторон треугольника. В геометрии существует теорема, согласно которой средняя линия всегда будет параллельна основанию треугольника. А для того, чтобы высчитать её длину, нужно длину этого основания поделить пополам.

Алиса в Стран­е
[364K]

6 лет назад 

Есть специальная теорема, которая очень просто и доходчиво объясняет и что такое средняя линия треугольника, и как вычислить ее длину.

Средняя линия, это линия параллельная основанию треугольника, а длина ее равна 1/2 этого основания.

Galin­a7v7
[120K]

7 лет назад 

Пусть дан треугольник АВС, MN- средняя линия треугольника АВС,причём:

AM = MB, BN = NC,тогда средняя линия равна половине стороны,против которой она лежит , и которой она параллельна,то есть MN =AC2.

AHTOX­A89
[5K]

5 лет назад 

Средняя линия треугольника-Это отрезок соединяющий середины двух его сторон.Зная свойства средней линии,а также длины сторон треугольника и его углы,можно найти длину средней линии.На рисунки показано как найти длину средней линии:

Антон­75
[206]

8 лет назад 

средняя линия треугольника равна 1/2 основания

Знаете ответ?

Центр треугольника

Точка, прямая, плоскость

Треугольник — наиболее распространенная форма деталей в сферах машиностроения и строительства. Точка пересечения 3-х медиан считается центром треугольника. На эту точку приходится также центр тяжести и центр симметрии предметов треугольной формы. При разработке дизайнерских, инженерных проектов очень важно точно рассчитать центр тяжести элементов металлической или бетонной конструкции.

Существует несколько понятий центра для треугольника.

Инцентр — точка пересечения его биссектрис. Это — центр описанной около треугольника окружности.

Ортоцентр — точка пересечения его высот.

Центр тяжести,центр масс или центроид (обозн. М) — точка пересечения медиан треугольника.

Рассмотрим треугольник. Определим середины его сторон и соединим их с противолежащими углами. Точка пересечения медиан и будет центром тяжести тр-ка. Медиана делится этой точкой в пропорции 2:1 , (считая от вершины тр-ка).

Как найти центр треугольника

Если известны координаты его вершин, найдем сумму трех значений координат «х» и трех значений координат «у». Поделим каждую сумму на 3, получим среднее значение сумм координат «х» и «у», что и будет координатами центра тяжести.

Центром равностороннего треугольника является точка пересечения высот, биссектрис и медиан.

Центр равностороннего треугольника является также центром вписанной и описанной окружности.

Центроид расположен на отрезке, соединяющем ортоцентр и центр описанной окружности. Центроид делит отрезок 2:1.

Быстро найти центр треугольника G можно с помощью онлайн калькулятора. Для этого:

  • ввести в поле калькулятора координаты вершин треугольника;
  • нажать кнопку Вычислить. Калькулятор вычислит значение центра треугольника G.

  1. Главная
  2. Справочники
  3. Справочник по геометрии 7-9 класс
  4. Подобные треугольники
  5. Средняя линия треугольника

Средняя линия треугольникаотрезок, который соединяет середины двух его сторон. В каждом треугольнике можно провести три средних линии, при пересечении которых получается четыре равных треугольника, подобных исходному с коэффициентом подобия . На рисунке 1 изображен треугольник АВС, отрезки МЕ, МК и КЕ являются средними линиями данного треугольника, ВМЕ =АМК =СЕК =МЕК.

Теорема

Средняя линия треугольника параллельна одной из его сторон и равна половине этой стороны.

Доказательство

Дано: АВС, МЕ — средняя линия.

Доказать: МЕАС, МЕ = АС.

Доказательство:

В треугольниках МВЕ и АВС:

Следовательно, треугольники МВЕ и АВС подобны (по 2 признаку подобия треугольников), поэтому 1 =2 и .

Прямые МЕ и АС пересечены секущей АВ, углы 1 и 2 — соответственные, при этом 1 =2, следовательно, МЕАС (по признаку параллельности двух прямых).

Из равенства следует, что МЕ = АС. Теорема доказана.

Задача:

Доказать, что медианы треугольника пересекаются в одной точке, которая делит каждую медиану в отношении 2 : 1, считая от вершины.

Дано: АВС, АА1 и ВВ1, СС1медианы, АА1ВВ1 = О.

Доказать: АА1ВВ1СС1 = О, АО : ОА1 = ВО : ОВ1 = СО : ОС1 = 2 : 1.

Доказательство:

Проведем среднюю линию В1А1 треугольника АВС (В1А1 — средняя линия, т.к. по условию АА1 и ВВ1медианы, значит точки А1 и В1середины сторон АС и СВ).

А1В1АВ (по теореме, доказанной выше), АА1 и ВВ1 — секущие, 1 и 2, 3 и 4 — накрест лежащие, значит, 1 =2, 3 =4 (по теореме о накрест лежащих углах). Следовательно, треугольники АОВ и А1ОВ1 подобны (по 1 признаку подобия), тогда сходственные стороны данных треугольников пропорциональны:

.      (1)

Так как А1В1 — средняя линия, А1В1 = АВ, откуда АВ = 2А1В1, поэтому АО = 2А1О и ВО = 2В1О. Подставляя три последних равенства в (1), получим:

.

Следовательно, точка О, в которой пересекаются медианы АА1 и ВВ1 делит каждую из них в отношении 2 : 1, считая от вершины.

Аналогично доказывается, что точка пересечения медиан ВВ1 и СС1 делит каждую из них в отношении 2 : 1, считая от вершины, и, значит, совпадает с точкой О.

Итак, все три медианы АВС пересекаются в точке О и делятся ею в отношении 2 : 1, считая от вершины. Что и требовалось доказать.

Советуем посмотреть:

Пропорциональные отрезки

Определение подобных треугольников

Отношение площадей подобных треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Пропорциональные отрезки в прямоугольном треугольнике

Практические приложения подобия треугольников

О подобии произвольных фигур

Синус, косинус и тангенс острого угла прямоугольного треугольника

Значение синуса, косинуса и тангенса для углов 30, 45 и 60

Подобные треугольники


Правило встречается в следующих упражнениях:

7 класс

Задание 566,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 567,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 571,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 8,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 616,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 618,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 630,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 733,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 861,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник

Задание 864,
Атанасян, Бутузов, Кадомцев, Позняк, Юдина, Учебник


Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как правильно составить уравнение реакции по химии
  • Как составить приказ на простой
  • Как найти аккаунт в лайке по видео
  • Как найти денежный поток инвестиции
  • Как найти скорость первого относительно скорости второго

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии