Как найти центр семетрии

Как найти центр симметрии

Одним из видов симметрии является центральная. Центр симметрии — некоторая точка O, относительно которой вращают плоскость, поворачивая ее на 180°. Каждая точка A переходит в такую точку A’, что O — середина отрезка AA’.

Как найти центр симметрии

Инструкция

Если даны две точки, центром симметрии между ними, по определению, будет середина отрезка, соединяющего их. Сложнее обстоит дело с геометрической фигурой: здесь уже надо рассмотреть все точки, составляющие ее. Любая произвольная точка должна переходить в центрально симметричную ей, иначе принцип симметрии будет нарушен.

Если даны две фигуры, про которые сказано, что они являются симметричными относительно неизвестного центра, попробуйте мысленно вращать каждую из фигур. В итоге вы должны представить переход на 180° (пол-окружности). Найдите любые две симметричные точки, проведите между ними отрезок. В его центре будет располагаться центр симметрии и этих двух точек, и всей фигуры.

Пусть надо построить окружность, симметричную данной относительно точки O. Центр окружности пусть обозначен точкой C. Проведите прямую от точки C через точку O. Ножками циркуля отмерьте расстояние OC, отложите такое же расстояние на прямой от точки O в другую сторону. Зафиксируйте результат, это будет центр новой окружности. Измерьте циркулем радиус исходной окружности и достройте симметричную.

Чтобы построить многоугольник, симметричный данному относительно центра O, найдите образ каждой из его вершин. Исходная точка называется «прообразом», конечная – «образом». Последовательно соедините точки между собой. Мысленно повращайте фигуры, оцените, правильным ли получился результат.

Если дана пространственная фигура, и необходимо найти центр симметрии между какими-либо двумя точками, вспомните свойства этого объемного тела. Возможно, центр симметрии лежит на пересечении диагоналей, биссектрис, медиан, перпендикуляров. Докажите, что указанная вами точка является именной центром симметрии, используя свойства фигуры, другие данные в задаче условия и определение симметричности.

Видео по теме

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Симметрия — соразмерность, соответствие, сходность, порядок в расположении частей. Это слово, как и многие другие математические понятия,  произошли от греческих слов.

 Смотря на объекты вокруг, мы не раз восклицаем: «Какая симметрия!»

castle-1395789_640.jpg 

Рис. (1). Симметрия в архитектуре.

Люди с давних времён использовали симметрию в рисунках, орнаментах, предметах быта, в архитектуре, художестве, строительстве.

Но симметрия широко распространена и в природе, где не было вмешательства человеческой руки. Её можно наблюдать в форме листьев и цветов растений, в расположении различных органов животных, в форме кристаллических тел, в порхающей бабочке, загадочной снежинке, морской звезде.

yellow-4161623_640.jpg

Рис. (2). Симметрия в природе.

Пока рассмотрим две симметрии на плоскости: относительно точки и прямой.

Симметрию относительно точки называют центральной симметрией.

Точки

M

и

M1

симметричны относительно некоторой точки  (O), если точка (O) является серединой отрезка

MM1

.

Simetrija_c_punkti.png

Рис. (3). Центральная симметрия.

Точка (O) называется центром симметрии.

Алгоритм построения центрально-симметричных фигур.

Simetrija_c.png

Рис. (4). Треугольники симметричны относительно точки (O).

Построим треугольник

A1B1C1

, симметричный треугольнику (ABC) относительно центра (точки) (O).

1. Для этого соединим точки (A), (B)(C) с центром (O) и продолжим эти отрезки.
2. Измерим отрезки (AO), (BO)(CO) и отложим с другой стороны от точки (O) равные им отрезки

AO=OA1;BO=OB1;CO=OC1

;
3. Соединим получившиеся точки отрезками и получим треугольник

A1B1C1

, симметричный данному треугольнику (ABC).

Фигуры, симметричные относительно некоторой точки, равны.

Фигура симметрична относительно центра симметрии, если для каждой точки этой фигуры симметричная ей точка также лежит на этой фигуре. Такая фигура имеет центр симметрии (фигура с центральной симметрией).

Есть фигуры с центральной симметрией, это, например, окружность и параллелограмм. У окружности центр симметрии — это её центр, у параллелограмма центр симметрии — это точка, в которой пересекаются его диагонали. Есть очень много фигур, у которых нет центра симметрии.

Осевая симметрия

Осевая симметрия это симметрия относительно проведённой прямой (оси).

Точки

M

и

M1

симметричны относительно некоторой прямой (оси симметрии), если эти точки лежат на прямой, перпендикулярной данной, и на одинаковом расстоянии от оси симметрии.

Simetrija_ass_punkti.png

Рис. (5). Осевая симметрия.
 

Алгоритм построения фигуры, симметричной относительно некоторой прямой.


Simetrija_ass.png

Рис. (6). Треугольники симметричны относительно прямой.

Построим треугольник

A1B1C1

, симметричный треугольнику (ABC) относительно красной прямой.

1. Для этого проведём из вершин треугольника (ABC) прямые, перпендикулярные оси симметрии, и продолжим их дальше на другой стороне оси.
2. Измерим расстояния от вершин треугольника до получившихся точек на прямой и отложим с другой стороны прямой такие же расстояния.
3. Соединим получившиеся точки отрезками и получим треугольник

A1B1C1

, симметричный данному треугольнику (ABC).

Фигуры, симметричные относительно прямой, равны.

Фигура считается симметричной относительно прямой, если для каждой точки рассматриваемой фигуры симметричная для неё точка относительно данной прямой также находится на этой фигуре. Прямая является в этом случае осью симметрии фигуры.

Иногда у фигур несколько осей симметрии:

  • для неразвёрнутого угла существует единственная ось симметрии — это биссектриса данного угла.
  • Для равнобедренного треугольника есть единственная ось симметрии.
  • Для равностороннего треугольника — три оси.
  • Для прямоугольника и ромба существуют две оси симметрии.
  • Для квадрата — целых четыре.
  • Для окружности осей симметрии бесчисленное множество — это каждая прямая, которая проходит через центр этой фигуры.
  • Есть фигуры без осей симметрии — это параллелограмм и треугольник, все стороны которого различны.

Источники:

Рис. 1 Симметрия в архитектуре. Указание авторства не требуется, 2021-06-02, Архитектура/Здания, бесплатно для коммерческого использования, https://clck.ru/VFC5B.

Рис. 2. Симметрия в природе. Указание авторства не требуется, 2021-06-02, бесплатно для коммерческого использования, https://clck.ru/VFECn.

Рис. 3. Центральная симметрия, © ЯКласс.

Рис. 4. Треугольники симметричны относительно точки O, © ЯКласс.

Рис. 5. Осевая симметрия, © ЯКласс.

Рис. 6. Треугольники симметричны относительно прямой, © ЯКласс.

  1. Главная
  2. Справочники
  3. Справочник по математике 5-9 класс
  4. Координаты на плоскости
  5. Осевая и центральная симметрии

Осевая симметрия

Рассмотрим построение точки, симметричной данной точке А относительно данной прямой .

Пусть дана точка А и прямая .

Точку симметричную точке А относительно прямой , можно построить так. Проведем через точку А прямую , перпендикулярную прямой . Для этого используем чертежный угольник. Прикладываем чертежный угольник так, как показано на рисунке ниже и проводим прямую через точку А.

Пусть прямые и пересекаются в точке О. Отложим при помощи линейки на прямой отрезок ОА1, равный отрезку ОА.

Получаем точки А и А1, которые симметричны относительно прямой .

Также можно построить фигуры, симметричные относительно прямой.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Пусть дан треугольник АВС и прямая .

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно прямой (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно прямой .

Обратите внимание, любые две фигуры, симметричные относительно прямой, равны.

Если фигура имеет ось симметрии (прямая  ) то, все точки этой фигуры, не принадлежащие этой оси, можно разделить на пары симметричных точек.

Центральная симметрия

Точки М и М1 называют симметричными относительно точки О, если точка О является серединой отрезка ММ1 (смотри рисунок ниже).

Рассмотрим построение точки, симметричной данной точке М относительно данной точки О.

Пусть даны точки М и О. Точку, симметричную точке М относительно точки О, можно построит так. Проведем луч МО.

На луче МО отложим отрезок ОN , равный отрезку ОМ.

Точки М и М1, которые симметричны относительно точки О.

Также можно построить фигуры, симметричные относительно точки.

Построим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Пусть дан треугольник АВС и точки О.

Далее строим точки А1, В1 и С1, симметричные точкам А, В и С относительно точки О (алгоритм построения смотри выше), соединив которые получим треугольник А1В1С1, симметричный треугольнику АВС относительно точки О.

Обратите внимание, любые две фигуры, симметричные относительно точки, равны.

Рассмотрим окружность с центром в точке О. Все точки окружности можно разбить на пары точек, симметричных относительно точки О.

В таком случае говорят, что окружность имеет центр симметрии — точку О.

Также центр симметрии имеют такие фигуры, как отрезок, прямоугольник, эллипс.

Советуем посмотреть:

Перпендикулярные прямые

Параллельные прямые

Координатная плоскость

Координаты на плоскости


Правило встречается в следующих упражнениях:

6 класс

Номер 1250,
Мерзляк, Полонский, Якир, Учебник

Номер 1257,
Мерзляк, Полонский, Якир, Учебник

Номер 1263,
Мерзляк, Полонский, Якир, Учебник

Номер 1264,
Мерзляк, Полонский, Якир, Учебник

Номер 1270,
Мерзляк, Полонский, Якир, Учебник

Номер 1272,
Мерзляк, Полонский, Якир, Учебник

Номер 1304,
Мерзляк, Полонский, Якир, Учебник

Номер 1306,
Мерзляк, Полонский, Якир, Учебник

Номер 1316,
Мерзляк, Полонский, Якир, Учебник

Номер 5,
Мерзляк, Полонский, Якир, Учебник


Найти центр симметрии можно далеко не для каждого многоугольника.Так для квадрата, правильного треугольника, правильных пяти- шести так далее угольников, найти центр симметрии не представляется сложным.Для это нужно найти точку пересечения самых длинных диагоналей, и в случае треугольника -это точка пересечения высот и медиан одновременно.(для правильного треугольника, повторяюсь)

В случае не правильного многоугольника, то есть таких, у которых нет попарно равных сторон, центр симметрии искать бесполезно.И отсюда вывод:

Не вяский многоугольник имеет центр симметрии, а только правильные.Для отыскания этого центра достаточно начертить две диагонали ,соединив максимально удалённый вершины попарно.

Определение центральной симметрии

Понятие

Определение

Центральная симметрия — это свойство фигуры, у которой есть некоторые точки В и В1, соединяющие отрезок и совпадающие в пространстве относительно фиксированного элемента — центральной точки С.

Симметричными могут быть и части фигуры. Для этого они должны быть соразмерными относительно центра. То есть при предполагаемом сгибе фигуры по центру все точки двух половин должны совпасть в пространстве.

Свойства

Одно из свойств симметрии — движение. Это значит, что при изменении положения все точки окажутся на том же расстоянии друг от друга, что и были, то есть симметрия сохранится.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Примечание

Изменение в пространстве предполагает поворот фигуры на 180°.

Центральная точка симметрии всегда неподвижна.

Прямая, проходящая через центр, симметрична сама себе.

Если прямая не проходит через центр, то она является параллельной. Это можно доказать путем построения двух прямых параллельных друг другу с центральной точкой, не лежащей ни на одной из линий. Соединяя симметричные точки, получим два равнобедренных треугольника, которые лежат накрест, а основания их останутся параллельными.

Свойства

 

Формула

Так как точка симметрии является центральной, то отрезки прямой, симметричные относительно этой точки, должны быть равны. Представим линию, соединенную точками А и В. Центром пусть будет Х. Верным можно считать равенство АХ=АВ. Если происходит движение, то А переходит в точку А1, а В в В1. Центральная точка Х остается неподвижной. В этом случае АВ = А1В1.

Фигуры с центральной симметрией

К таким фигурам относится параллелограмм, так как в центральной точке пересекаются его диагонали. Каждая из фигур, получившаяся в результате пересечения, является симметричной.

У окружности центр находится посередине, а точки, лежащие на ней, являются симметричными.

Аналогичными свойствами обладают ромб и квадрат.

Как построить

Для построения симметрии относительно центральной точки, нужно начертить линию. Затем от одной из точек отложить отрезок, равный расстоянию между двумя первыми точками, и отметить третью. В результате вторая точка станет центром симметрии.

Примеры

Центральная симметрия часто встречается в окружающих нас предметах. В природе это любые круглые предметы: плоды кокоса, арбуза, томата, шапка одуванчика. Цветы симметричны относительно своей центральной части. Пчелиные соты представляют собой идеальные шестиугольники. Микроскопические капли воды, замерзая, образуют симметричные снежинки.

Симметрия свойственна многим предметам, созданным человеком: колесо, дорожные знаки, начертание букв.

Все виды симметрии, и центральная в частности, находят применение в строительстве и архитектуре. Принципа соразмерности придерживались все сторонники классицизма в искусстве.

Насколько полезной была для вас статья?

Рейтинг: 4.13 (Голосов: 8)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти площадь круга видеоурок
  • Как составить расписку в получении возврата долга
  • Как найти замок крысы
  • Как найти белку в тайге
  • Как составить приглашение на 23 февраля

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии