Как найти число щелей дифракционной решетки

Вывод формулы дифракционной решетки

Дифракционная
решетка


оптическое
устройство, представляющее собой
совокупность большого числа параллельных,
обычно равностоящих друг от друга щелей.
Дифракционную решетку можно получить
нанесением непрозрачных царапин
(штрихов) на стеклянную пластину.
Непроцарапанные места – щели – будут
пропускать свет, штрихи – рассеивать
и не пропускать (рис. 3).

Рис.
3. Сечение дифракционной решетки (а) и
ее графическое изображение (б)

Для
вывода формулы рассмотрим дифракционную
решетку при условии перпендикулярного
падения света (рис. 4). Выберем два
параллельных луча, прошедших две щели
и направленных под углом φ к нормали.

С
помощью собирающей линзы (глаза) эти
два луча попадут в одну точку фокальной
плоскости Р и результат их интерференции
будет зависеть от разности фаз или от
их разности хода. Если линза стоит
перпендикулярно лучам, то разность хода
будет определяться отрезком ВС, где АС
– перпендикуляр к лучам А и В. В
треугольнике АВС имеем: АВ = а + b
= d
– период решетки, ВАС
= φ, как углы с взаимно перпендикулярными
сторонами.

ВС
= dsin
φ

(8)

Лучи
А и В дадут интерференционный максимум,
если
выполнится условие (4), т.е.

ВС
= к

(9)

Из
формул (8) и (9) получим формулу
дифракционной решетки
:

(10)

Рис.
4. Дифракция света на дифракционной
решетке

Т.е.
положение световой линии в дифракционном
спектре не зависит от вещества решетки,
а определяется периодом решетки, который
равен сумме ширины щели и промежутка
между щелями.

Разрешающая способность дифракционной решетки.

Если
свет, падающий на дифракционную решетку
полихроматический, т.е. состоит из
нескольких длин волн, то в спектре
максимумы отдельных 
будут под разными
углами.
Характеризовать разрешение можно
угловой
дисперсией:

(11)

где
d

угловое расстояние между двумя линиями
спектра, которые имеют разность длин
волн равную d.

При
дифференцировании формулы дифракционной
решетки получим, что дисперсия равна:

(12)

Следовательно,
угловая дисперсия тем больше, чем больше
порядок спектра k.

II. Работа студентов во время практического занятия.

Задание
1.

Получить
допуск к занятию. Для этого необходимо:

– иметь
конспект в рабочей тетради, содержащий
название работы, основные теоретические
понятия изучаемой темы, задачи
эксперимента, таблицу по образцу для
внесения экспериментальных результатов;

– успешно
пройти контроль по методике проведения
эксперимента;

– получить
у преподавателя разрешение выполнять
экспериментальную часть работы.

Задание
2.

Выполнение
лабораторной работы, обсуждение
полученных результатов, оформление
конспекта.

Приборы и принадлежности

Рис.
5 Схема установки

1.
Дифракционная решетка.

2.
Источник света.

3.
Экран.

4.
Линейка.

В
данной лабораторной работе предлагается
определить длины волн для красного и
зеленого цветов, которые получаются
при прохождении света через дифракционную
решетку. При этом на экране наблюдается
дифракционный спектр. Дифракционная
решетка состоит из большого числа
параллельных щелей, очень малых по
сравнению с длиной волны. Щели позволяют
проходить свету, в то время как пространство
между щелями непрозрачно. Общее количество
щелей
– N,
с расстоянием между их центрами – d.
Формула дифракционной решетки:

dsin
φ = kλ,

где
d
– период решетки; sin
φ – синус угла отклонения от прямолинейного
распространения света; k
– порядок максимума; λ
– длина волны света.

Экспериментальная
установка состоит из дифракционной
решетки, источника света и подвижного
экрана с линейкой. На экране наблюдается
дифракционный спектр (рис. 5).

Расстояние
от дифракционной решетки до экрана L
может изменяться перемещением экрана.
Расстояние от центрального луча света
до отдельной линии спектра l.
При малых углах φ:

Тогда
из формулы дифракционной решетки
получим:

,
следовательно

(13)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #

    22.02.2015634.37 Кб8115.doc

  • #
  • #
  • #
  • #

    22.02.2015201.73 Кб25718.doc

  • #

    22.02.2015155.14 Кб3419.doc

  • #
  • #
  • #
  • #

5.5. Дифракционная решетка

Широкое распространение в научном эксперименте и технике получили дифракционные решетки, которые представляют собой множество параллельных, расположенных на равных расстояниях одинаковых щелей, разделенных равными по ширине непрозрачными промежутками. Дифракционные решетки изготавливаются с помощью делительной машины, наносящей штрихи (царапины) на стекле или другом прозрачном материале. Там, где проведена царапина, материал становится непрозрачным, а промежутки между ними остаются прозрачными и фактически играют роль щелей.

Рассмотрим сначала дифракцию света от решетки на примере двух щелей. (При увеличении числа щелей дифракционные максимумы становятся лишь более узкими, более яркими и отчетливыми.)

Пусть а — ширина щели, a b ширина непрозрачного промежутка (рис. 5.6).

Рис. 5.6. Дифракция от двух щелей

Период дифракционной решетки — это расстояние между серединами соседних щелей:

Разность хода двух крайних лучей равна

Если разность хода равна нечетному числу полуволн

то свет, посылаемый двумя щелями, вследствие интерференции волн будет взаимно гаситься. Условие минимумов имеет вид

Эти минимумы называются дополнительными.

Если разность хода равна четному числу полуволн

то волны, посылаемые каждой щелью, будет взаимно усиливать друг друга. Условие интерференционных максимумов с учетом (5.36) имеет вид

Это формула для главных максимумов дифракционной решетки.

Кроме того, в тех направлениях, в которых ни одна из щелей не распространяет свет, он не будет распространяться и при двух щелях, то есть главные минимумы решетки будут наблюдаться в направлениях, определяемых условием (5.21) для одной щели:

Если дифракционная решетка состоит из N щелей (современные решетки, применяемые в приборах для спектрального анализа, имеют до 200 000 штрихов, и период d = 0.8 мкм, то есть порядка 12 000 штрихов на 1 см), то условием главных минимумов является, как и в случае двух щелей, соотношение (5.41), условием главных максимумов — соотношение (5.40), а условие дополнительных минимумов имеет вид

Здесь k’ может принимать все целочисленные значения, кроме 0, N, 2N, . . Следовательно, в случае N щелей между двумя главными максимумами располагается (N–1) дополнительных минимумов, разделенных вторичными максимумами, создающими относительно слабый фон.

Положение главных максимумов зависит от длины волны l. Поэтому при пропускании через решетку белого света все максимумы, кроме центрального, разлагаются в спектр, фиолетовый конец которого обращен к центру дифракционной картины, а красный — наружу. Таким образом, дифракционная решетка представляет собой спектральный прибор. Заметим, что в то время как спектральная призма сильнее всего отклоняет фиолетовые лучи, дифракционная решетка, наоборот, сильнее отклоняет красные лучи.

Важной характеристикой всякого спектрального прибора является разрешающая способность.

Разрешающая способность спектрального прибора — это безразмерная величина

Дифракционная решётка

Дифракциейназывается любое отклонение распространения света от прямолинейного, не связанное с отражением и преломлением. Качественный метод расчета дифракционной картины предложил Френель. Основной идеей метода является принцип Гюйгенса — Френеля:

Каждая точка, до которой доходит волна, служит источником когерентных вторичных волн, а дальнейшее распространение волны определяется интерференцией вторичных волн.

Геометрическое место точек, для которых колебания имеют одинаковые фазы, называют волновой поверхностью. Волновой фронт также является волновой поверхностью.

Дифракционная решеткапредставляет собой совокупность большого числа параллельных щелей или зеркал одинаковой ширины и отстоящих друг от друга на одинаковом расстоянии.Периодом решетки (d)называется расстояние между серединами соседних щелей, или что то же самое сумма ширины щели (а) и непрозрачного промежутка (b)между ними (d = a + b).

Рассмотрим принцип действия дифракционной решетки. Пусть на решетку нормально к её поверхности падает параллельный пучок лучей белого света (рис. 1). На щелях решетки, ширина которых соизмерима с длиной волны света, происходит дифракция.

Рис. 1. Ход лучей в дифракционной решетке

В результате за дифракционной решеткой согласно принципу Гюйгенса-Френеля от каждой точки щели световые лучи будут распространяться во всех возможных направлениях, которым можно сопоставить углы отклонения φ световых лучей (углы дифракции) от первоначального направления. Параллельные между собой лучи (дифрагирующие под одинаковым углом φ) можно сфокусировать, установив за решеткой собирающую линзу. Каждый пучок параллельных лучей соберется в задней фокальной плоскости линзы в определённой точке А. Параллельные лучи, соответствующие другим углам дифракции, соберутся в других точках фокальной плоскости линзы. В этих точках будет наблюдаться интерференция световых волн, исходящих от разных щелей решетки. Если оптическая разность хода между соответствующими лучами монохроматического света будет равна целому числу длин волн , κ = 0, ±1, ±2, …, то в точке наложения лучей будет наблюдаться максимум интенсивности света для данной длины волны, Из рисунка 1 видно, что оптическая разность хода Δ между двумя параллельными лучами, выходящими из соответствующих точек соседних щелей, равна

, (1)

где φ – угол отклонения луча решеткой.

Следовательно, условие возникновения главных интерференционных максимумов решетки или уравнение дифракционной решетки

, (2)

где λ – длина световой волны.

В фокальной плоскости линзы для лучей, не испытавших дифракции, наблюдается центральный белый максимум нулевого порядка (φ = 0, κ = 0), справа и слева от которого располагаются цветные максимумы (спектральные линии) первого, второго и последующих порядков (рис. 1). Интенсивность максимумов уменьшается с ростом их порядка, т.е. с увеличением угла дифракции.

Уравнение (1) позволяет рассчитать длину волны падающего света, если измерен угол дифракции φ, для данной спектральной линии, известны период дифракционной решетки d и порядок спектра k.

Зная период решетки, можно рассчитать число штрихов n, нанесенных на 1 мм ширины решетки:

. (3)

Одной из основных характеристик дифракционной решетки является её угловая дисперсия. Угловая дисперсия решетки определяет угловое расстояние между направлениями для двух спектральных линий, отличающихся по длине волны на 1 нм ( = 1 нм), и характеризует степень растянутости спектра вблизи данной длины волны:

. (4)

Формула для расчета угловой дисперсии решетки может быть получена при дифференцировании уравнения (2) . Тогда

. (5)

Из формулы (5) следует, что угловая дисперсия решетки тем больше, чем больше порядок спектра.

Для решеток с разными периодами ширина спектра больше у решетки, характеризующейся меньшим периодом. Обычно в пределах одного порядка меняется незначительно (особенно для решеток с небольшим числом штрихов на миллиметр), поэтому дисперсия в пределах одного порядка почти не меняется. Спектр, полученный при постоянной дисперсии, растянут равномерно во всей области длин волн, что выгодно отличает спектр решетки от спектра, даваемого призмой.

Угловая дисперсия связана с линейной дисперсией . Линей­ную дисперсию можно также вычислить по формуле

, (6) где – линейное расстояние на экране или фотопластинке между спектральными линиями, f – фокусное расстояние линзы.

Дифракционная решетка также характеризуется разрешающей способностью. Этавеличина, характеризующая способность дифракционной решетки давать раздельное изображение двух близких спектральных линий

R = , (7)

где l – средняя длина волны разрешаемых спектральных линий; dl – разность длин волн двух соседних спектральных линий.

Зависимость разрешающей способности от числа щелей дифракционной решетки N определяется формулой

R = = kN, (8)

где k – порядок спектра.

Из уравнения для дифракционной решетки (1) можно сделать следующие выводы:

1. Дифракционная решетка будет давать заметную дифракцию (значительные углы дифракции) только в том случае, когда период решетки соизмерим с длиной световой волны, то есть d »l» 10 –4 см. Решетки с периодом меньше длины волны не дают дифракционных максимумов.

2. Положение главных максимумов дифракционной картины зависит от длины волны. Спектральные составляющие излучения немонохроматического пучка отклоняются решеткой на разные углы (дифракционный спектр). Это позволяет использовать дифракционную решетку в качестве спектрального прибора.

3. Максимальный порядок спектра, при нормальном падении света на дифракционную решетку, определяется соотношением:

Дифракционные решетки, используемые в различных областях спектра, отличаются размерами, формой, материалом поверхности, профилем и частотой штрихов, что позволяет перекрыть область спектра от ультрафиолетовой его части (l » 100 нм) до инфракрасной (l » 1 мкм). Широко используются в спектральных приборах гравированные решетки (реплики), которые представляют собой отпечатки решеток на специальных пластмассах с последующим нанесением металлического отражательного слоя.

Дата добавления: 2015-06-10 ; просмотров: 10857 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Основная формула дифракционной решетки

Одними из известных эффектов, которые подтверждают волновую природу света, являются дифракция и интерференция. Главная область их применения — спектроскопия, в которой для анализа спектрального состава электромагнитного излучения используют дифракционные решетки. Формула, которая описывает положение главных максимумов, даваемых этой решеткой, рассматривается в данной статье.

В чем заключаются явления дифракции и интерференции?

Прежде чем рассматривать вывод формулы дифракционной решетки, следует познакомиться с явлениями, благодаря которым это решетка оказывается полезной, то есть с дифракцией и интерференцией.

Вам будет интересно: Пополняем словарный запас: факир — это.

Дифракция — это процесс изменения движения волнового фронта, когда на своем пути он встречает непрозрачное препятствие, размеры которого сравнимы с длиной волны. Например, если через маленькое отверстие пропустить солнечный свет, то на стене можно наблюдать не маленькую светящуюся точку (что должно было произойти, если бы свет распространялся по прямой линии), а светящееся пятно некоторых размеров. Этот факт свидетельствует о волновой природе света.

Интерференция — еще одно явление, которое характерно исключительно для волн. Его суть заключается в наложении волн друг на друга. Если волновые колебания от нескольких источников согласованы (являются когерентными), тогда можно наблюдать устойчивую картину из чередующихся светлых и темных областей на экране. Минимумы на такой картине объясняются приходом волн в данную точку в противофазе (pi и -pi), а максимумы являются результатом попадания в рассматриваемую точку волн в одной фазе (pi и pi).

Оба описанных явления впервые объяснил англичанин Томас Юнг, когда исследовал дифракцию монохроматического света на двух тонких щелях в 1801 году.

Принцип Гюйгенса-Френеля и приближения дальнего и ближнего полей

Математическое описание явлений дифракции и интерференции является нетривиальной задачей. Нахождение точного ее решения требует выполнение сложных расчетов с привлечением максвелловской теории электромагнитных волн. Тем не менее в 20-е годы XIX века француз Огюстен Френель показал, что, используя представления Гюйгенса о вторичных источниках волн, можно с успехом описывать эти явления. Эта идея привела к формулировке принципа Гюйгенса-Френеля, который в настоящее время лежит в основе вывода всех формул для дифракции на препятствиях произвольной формы.

Тем не менее даже с помощью принципа Гюйгенса-Френеля решить задачу дифракции в общем виде не удается, поэтому при получении формул прибегают к некоторым приближениям. Главным из них является плоский волновой фронт. Именно такая форма волны должна падать на препятствие, чтобы можно было упростить ряд математических выкладок.

Следующее приближение заключается в положении экрана, куда проецируется дифракционная картина, относительно препятствия. Это положение описывается числом Френеля. Оно вычисляется так:

Где a — геометрические размеры препятствия (например, щели или круглого отверстия), λ — длина волны, D — дистанция между экраном и препятствием. Если для конкретного эксперимента F 1, тогда имеет место приближение ближнего поля или дифракция Френеля.

Разница между дифракциями Фраунгофера и Френеля заключается в различных условиях для явления интерференции на маленьком и большом расстояниях от препятствия.

Вывод формулы главных максимумов дифракционной решетки, который будет приведен далее в статье, предполагает рассмотрение дифракции Фраунгофера.

Дифракционная решетка и ее виды

Эта решетка представляет собой пластинку из стекла или прозрачного пластика размером в несколько сантиметров, на которую нанесены непрозрачные штрихи одинаковой толщины. Штрихи расположены на постоянном расстоянии d друг от друга. Это расстояние носит название периода решетки. Две других важных характеристики прибора — это постоянная решетки a и число прозрачных щелей N. Величина a определяет количество щелей на 1 мм длины, поэтому она обратно пропорциональна периоду d.

Существует два типа дифракционных решеток:

  • Прозрачная, которая описана выше. Дифракционная картина от такой решетки возникает в результате прохождения через нее волнового фронта.
  • Отражающая. Она изготавливается с помощью нанесения маленьких бороздок на гладкую поверхность. Дифракция и интерференция от такой пластинки возникают за счет отражения света от вершин каждой бороздки.

Какой бы ни был тип решетки, идея ее воздействия на волновой фронт заключается в создании периодического возмущения в нем. Это приводит к образованию большого количества когерентных источников, результатом интерференции которых является дифракционная картина на экране.

Основная формула дифракционной решетки

Вывод этой формулы предполагает рассмотрение зависимости интенсивности излучения от угла его падения на экран. В приближении дальнего поля получается следующая формула для интенсивности I(θ):

I(θ) = I0*(sin(β)/β)2*[sin(N*α)/sin(α)]2, где

α = pi*d/λ*(sin(θ) — sin(θ0));

β = pi*a/λ*(sin(θ) — sin(θ0)).

В формуле ширина щели дифракционной решетки обозначается символом a. Поэтому множитель в круглых скобках отвечает за дифракцию на одной щели. Величина d — это период дифракционной решетки. Формула показывает, что множитель в квадратных скобках, где появляется этот период, описывает интерференцию от совокупности щелей решетки.

Пользуясь приведенной формулой, можно рассчитать значение интенсивности для любого угла падения света.

Если находить значение максимумов интенсивности I(θ), то можно прийти к выводу, что они появляются при условии, что α = m*pi, где m является любым целым числом. Для условия максимумов получаем:

m*pi = pi*d/λ*(sin(θm) — sin(θ0)) =>

sin(θm) — sin(θ0) = m*λ/d.

Полученное выражение называется формулой максимумов дифракционной решетки. Числа m — это порядок дифракции.

Другие способы записи основной формулы для решетки

Заметим, что в приведенной в предыдущем пункте формуле присутствует член sin(θ0). Здесь угол θ0 отражает направление падения фронта световой волны относительно плоскости решетки. Когда фронт падает параллельно этой плоскости, то θ0 = 0o. Тогда получаем выражение для максимумов:

Поскольку постоянная решетки a (не путать с шириной щели) обратно пропорциональна величине d, то через постоянную дифракционной решетки формула выше перепишется в виде:

Чтобы не возникало ошибок при подстановке конкретных чисел λ, a и d в эти формулы, следует всегда использовать соответствующие единицы СИ.

Понятие об угловой дисперсии решетки

Будем обозначать эту величину буквой D. Согласно математическому определению, она записывается следующим равенством:

Физический смысл угловой дисперсии D заключается в том, что она показывает, на какой угол dθm сместится максимум для порядка дифракции m, если изменить длину падающей волны на dλ.

Если применить это выражение для уравнения решетки, тогда получится формула:

Дисперсия угловая дифракционной решетки определяется по формуле выше. Видно, что величина D зависит от порядка m и от периода d.

Чем больше дисперсия D, тем выше разрешающая способность данной решетки.

Разрешающая способность решетки

Под разрешающей способностью понимают физическую величину, которая показывает, на какую минимальную величину могут отличаться две длины волны, чтобы их максимумы на дифракционной картине появлялись раздельно.

Разрешающая способность определяется критерием Рэлея. Он гласит: два максимума можно разделить на дифракционной картине, если расстояние между ними оказывается больше полуширины каждого из них. Угловая полуширина максимума для решетки определяется по формуле:

Разрешающая способность решетки в соответствии с критерием Рэлея равна:

Δθm>Δθ1/2 или D*Δλ>Δθ1/2.

Подставляя значения D и Δθ1/2, получаем:

Это и есть формула разрешающей способности дифракционной решетки. Чем больше число штрихов N на пластинке и чем выше порядок дифракции, тем больше разрешающая способность для данной длины волны λ.

Дифракционная решетка в спектроскопии

Выпишем еще раз основное уравнение максимумов для решетки:

Здесь видно, что чем больше длина волны падает на пластинку со штрихами, тем при больших значениях углов будут появляться максимумы на экране. Иными словами, если через пластинку пропустить немонохроматический свет (например, белый), то на экране можно видеть появление цветных максимумов. Начиная от центрального белого максимума (дифракция нулевого порядка), дальше будут появляться максимумы для более коротких волн (фиолетовый, синий), а затем для более длинных (оранжевый, красный).

Другой важный вывод из этой формулы заключается в зависимости угла θm от порядка дифракции. Чем больше m, тем больше значение θm. Это означает, что цветные линии будут сильнее разделены между собой на максимумах для высокого порядка дифракции. Этот факт уже был освящен, когда рассматривалась разрешающая способность решетки (см. предыдущий пункт).

Описанные способности дифракционной решетки позволяют использовать ее для анализа спектров излучения различных светящихся объектов, включая далекие звезды и галактики.

Пример решения задачи

Покажем, как пользоваться формулой дифракционной решетки. Длина волны света, которая падает решетку, равна 550 нм. Необходимо определить угол, при котором появляется дифракция первого порядка, если период d равен 4 мкм.

Угол θ1 легко рассчитать по формуле:

Переводим все данные в единицы СИ и подставляем в это равенство:

θ1 = arcsin(550*10-9/(4*10-6)) = 7,9o.

Если экран будет находиться на расстоянии 1 метр от решетки, то от середины центрального максимума линия первого порядка дифракции для волны 550 нм появится на расстоянии 13,8 см, что соответствует углу 7,9o.

источники:

http://helpiks.org/3-74216.html

http://1ku.ru/obrazovanie/35461-osnovnaja-formula-difrakcionnoj-reshetki/

Дифракция — явление отклонения световых волн от прямолинейного распространения при прохождении света мимо края препятствия. При этом лучи могут попадать в область геометрической тени от препятствия.

diffraction author lookang

Между интерференцией и дифракцией нет существенного физического различия. Оба явления заключаются в перераспределении светового потока в результате наложения (суперпозиции) волн. По историческим причинам отклонение от закона независимости световых пучков, возникающее в результате суперпозиции когерентных волн, принято называть интерференцией волн. Отклонение от закона прямолинейного распространения света, в свою очередь, принято называть дифракцией волн.

0006 039 Zakon prjamolinejnogo rasprostranenija sveta         0005 003 Interferentsija poverkhnostnykh voln ot dvukh tochechnykh istochnikov V tochkakh

Наблюдение дифракции осуществляется обычно по следующей схеме. На пути световой волны, распространяющейся от некоторого источника, помещается непрозрачная преграда, закрывающая часть волновой поверхности световой волны. За преградой располагается экран, на котором возникает дифракционная картина.

Различают два вида дифракции. Если источник света S и точка наблюдения P расположены от препятствия настолько далеко, что лучи, падающие на препятствие, и лучи, идущие в точку P, образуют практически параллельные пучки, говорят о дифракции в параллельных лучах или о дифракции Фраунгофера. В противном случае говорят о дифракции Френеля. Количественный критерий, позволяющий установить, какой вид дифракции имеет место, определяется величиной безразмерного параметра b2/lλ, где b – характерный размер препятствия, l – расстояние между препятствием и экраном, на котором наблюдается дифракционная картина, λ – длина волны.

Свойства дифракции:

1) Дифракция волн – характерная особенность распространения волн независимо от их природы.

2) Волны могут попадать в область геометрической тени (огибать препятствия, проникать через не­большие отверстия в экранах). На­пример, звук хорошо слышен за углом дома — звуковая волна его огибает. Дифракцией радиоволн вокруг поверхности Земли объясняется прием радиосигналов в диапазоне длинных и средних радиоволн за пределами прямой видимости излучающей антенны.

3) Дифракция волн зависит от соотношения между длиной волны и размером объекта, вызывающего дифракцию. В пределе при λ→0 законы волновой оптики переходят в законы геометрической оптики. Дифракция обнаруживается в тех случаях, когда размеры огибаемых препятствий соизмеримы с длиной волны.

slitDiffraction

Объяснить явление дифракции можно исходя из принципа Гюйгенса-Френеля.Этот принцип представляет собой правило, объясняющее, как, исходя из положения волнового фронта в данный момент, найти новое положение волнового фронта в последующий момент времени.

Гюйгенс предложил рассматривать каждую точку среды, которой достигла волна, как источник вторичных сферических волн, распространяющихся по всем направлениям со скоростью, присущей данной среде. Поверхность, огибающая вторичные волны, представляет собой фронт волны в данный момент времени.

Френель дополнил изложенный принцип следующим положением: вторичные сферические волны являются когерентными и колебания в любой точке пространства, которой вторичные волны достигнут в момент времени t, представляют собой результат интерференции этих вторичных волн

Принцип Гюйгенса — Френеля формулируется следующим образом:

Каждый элемент волнового фронта можно рассматривать как центр вторичного возмущения, порождающего вторичные сферические волны, а результирующее световое поле в каждой точке пространства будет определяться интерференцией этих волн.

Дифракция Фраунгофера от одной щели

Дифракция Фраунгофера наблюдается, когда источник света сильно удален от места наблюдения, в результате фронт волны можно считать плоским.

clip image001 0000

Разность хода двух волн от краев щели равна Δ = b sin φ.

Разобьем MN на отрезки длиной λ/2. Параллельно произвольному направлению луча через точки разбиения (1, 2, 3) проведем линии, которые разделят открытую часть волновой поверхности MN на участки равной ширины – зоны Френеля, параллельные краям щели. По построению ∆ – разность хода лучей от краев зон Френеля равна λ/2. Это означает, что волны, идущие от двух соседних зон при наложении погасят друг друга. Т.о., если на открытой части волновой поверхности для данного направления наблюдения уложится целое четное число зон Френеля, то для данного направления будет наблюдаться min интенсивности, т.к. зоны попарно друг друга погасят.

Четное число зон Френеля — минимум дифракции

min difr

m = 1, 2, 3…

Если число зон Френеля целое и нечетное, то в этом направлении будет наблюдаться max:

max difr

m = 0, 1, 2, 3…

Дифракционная решетка

Совокупность большого числа щелей и промежутков между ними называется дифракционной решеткой.

clip image018 0001

b — ширина щели;

а — ширина промежутка между щелями;

d = a + b — период решетки .

d

N — число щелей, приходящихся на единицу длины

Дифракционная картина на решетке определяется как интерференция волн, приходящих от всех щелей, т. е. дифракция на решетке — многолучевая интерференция. Поскольку щели разделены одинаковым расстоянием, разности хода лучей, поступающих из двух соседних щелей, будут для направления φ идентичны по всей решетке.

Δ = d sin φ

В областях, в которых существует минимум при одной щели, минимумы будут и в случае N щелей, т. е. условие первичного минимума дифракционной решетки аналогично условию минимума для одной щели:

min  — условие главных минимумов.

Условие главных максимумов:

max 

Эти максимумы расположены симметрично относительно центра (k = 0) и главного максимума.

difr gap

Между основными пиками есть дополнительные очень слабые пики, интенсивность которых значительно меньше, чем у основных пиков (1/22 интенсивности ближайшего главного максимума). Количество дополнительных максимумов равно N — 2, где N — количество штрихов решетки.

Между главными максимумами будут расположены (N-1) дополнительных минимумов.

difr gratingmax cond

Разрешающая способность дифракционной решетки

Размер дифракционных изображений очень мал. Например, радиус центрального светлого пятна в фокальной плоскости линзы диаметром D = 5 см с фокусным расстоянием F = 50 см в монохроматическом свете с длиной волны λ = 500 нм приблизительно равен 0,006 мм. Но в высокоточных астро­но­ми­ческих приборах реализуется дифракци­он­ный предел качества изо­бра­же­ний. Вслед­ствие дифракционного размытия изобра­жения двух близких точек объекта могут оказаться неотличимыми от изо­бра­же­ния одной точки.

img xCe4dl

Спектральной разрешающей способностью R решетки, характеризующей возможность разделения с ее помощью двух близких спектральных линий с длинами волн λ и λ + Δλ, называется отношение длины волны λ к минимально возможному значению Δλ

image034

Пусть решетка имеет период d = 10–3 мм, ее длина L = 10 см. Тогда, N = 105 (это хорошая решетка). В спектре 2-го порядка разрешающая способность решетки оказывается равной R = 2·105. Это означает, что минимально разрешимый интервал длин волн в зеленой области спектра (λ = 550 нм) равен Δλ = λ / R ≈ 2,8·10–3 нм. 

Действие оптических приборов описывается законами геометрической оптики. Согласно этим законам можно различать с помощью микроскопа сколь угодно малые детали объекта; с помощью телескопа можно установить существование двух звезд при любых малых угловых расстояниях между ними. Однако в действительности это не так, и лишь волновая теория света позволяет разобраться в причинах предела разрешающей способности оптических приборов.

Метод зон Френеля

Границей первой (центральной) зоны служат точки поверхности S, находящиеся на расстоянии l + λ/2  от точки M. Точки сферы S, находящиеся на расстояниях l + 2λ/2, l + 3λ/2 , и т.д. от точки M, образуют 2, 3 и т.д. зоны Френеля.

Колебания, возбуждаемые в точке M между двумя соседними зонами, противоположны по фазе, так как разность хода от этих зон до точки M  Δ = λ/2.

image151

Поэтому при сложении этих колебаний, они должны взаимно ослаблять друг друга: A = A1 + A2 + A3 +…+ Ai.

где A – амплитуда результирующего колебания, Ai – амплитуда колебаний, возбуждаемая i-й зоной Френеля.

Величина Ai зависит от площади Si зоны и угла αi между нормалью к поверхности и прямой, направленной в точку M.

Площадь одной зоны

Square

Отсюда видно, что площадь зоны Френеля не зависит от номера зоны i. Это значит, что при не слишком больших i площади соседних зон одинаковы.

В то же время с увеличением номера зоны возрастает угол αi  и, следовательно, уменьшается интенсивность излучения зоны в направлении точки M, т.е. уменьшается амплитуда Ai. Она уменьшается также из-за увеличения расстояния до точки M.

Отсюда следует, что углы между нормалью к зоне и направлением на точку M у соседних зон примерно равны, т.е. что амплитуды волн, приходящих в точку M от соседних зон, примерно равны.

Приближенно можно считать, что амплитуда колебания Am  от некоторой m-й зоны равна среднему арифметическому от амплитуд примыкающих к ней зон, т.е.

Am .

Тогда выражение для амплитуды можно записать в виде

A rez

Так как площади соседних зон одинаковы, то выражения в скобках равны нулю, значит результирующая амплитуда А = A1 /2.

Интенсивность излучения J ~ A2.

Таким образом, результирующая амплитуда, создаваемая в некоторой точке M всей сферической поверхностью, равна половине амплитуды, создаваемой одной лишь центральной зонойа интенсивность J = J1/4 .

Так как радиус центральной зоны мал ( r1 = 0,16 мм), следовательно, можно считать, что свет от точки P до точки M распространяется прямолинейно.

Если на пути волны поставить непрозрачный экран с отверстием, оставляющим открытой только центральную зону Френеля, то амплитуда в точке M будет равна A1. Соответственно, интенсивность в точке M будет в 4 раза больше, чем при отсутствии экрана (т.к. J = 4J1 ). Интенсивность света увеличивается, если закрыть все четные зоны.

Таким образом, принцип Гюйгенса–Френеля позволяет объяснить прямолинейное распространение света в однородной среде.

Дифракция на простых объектах

Дифракция на щели

diffraction1
Дифракция от круглого отверстия
Поставим на пути сферической световой волны непрозрачный экран с круглым отверстием радиуса . Экран расположен так, что перпендикуляр, опущенный из S на непрозрачный экран, попадает точно в центр отверстия.

Разобьем открытую часть волновой поверхности на зоны Френеля. Вид дифракционной картины зависит от числа зон Френеля, открываемых отверстием. Когда отверстие открывает нечетное число зон Френеля, то амплитуда (интенсивность) в точке М будет больше, чем при свободном распространении волны; если четное, то амплитуда (интенсивность) будет равна нулю.

image1782  Otv difr

Дифракция на круглом отверстии при открытом чётном (слева) и нечётном (справа) числе зон.

Difr otv

Естественно, что если r0>>λ, то никакой дифракционной картины не будет.

Дифракция от диска
Сферическая волна, распространяющаяся от точечного источника S, встречает на своем пути диск.

В центре тени светлое пятно

image1788 0014 069 Difraktsija ot kruglogo diska

Difr disk                  

Амплитуда световых колебаний в точке M равна половине амплитуды, обусловленной первой открытой зоной. Если размер диска невелик (охватывает небольшое число зон), то действие первой зоны немногим отличается от действия центральной зоны волнового фронта. Таким образом, освещенность в точке M будет такой же, как и в отсутствие экрана. Вследствие симметрии центральная светлая точка будет окружена кольцами света и тени (вне границ геометрической тени).

Парадоксальное, на первый взгляд, заключение, в силу которого в самом центре геометрической тени может находиться светлая точка, было выдвинуто Пуассоном в 1818 г. и впоследствии было названо его именем. «Пятно Пуассона» подтверждает правильность теории Френеля.

arrow left                                     arrow right

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти углы в треугольнике по координатам
  • Как найти площадь на клетчатой бумаге 1х1
  • Как найти чужой айфон через компьютер
  • Maya как найти объект
  • Телеграмм как найти удаленный чат

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии