Как найти буравчик в физике

Во многих задачах, связанных с расчётами электрических величин, важно знать направление линий магнитной индукции относительно электрического тока и наоборот. Сложные расчёты параметров магнитных полей в различных системах также невозможно выполнить без учёта направления векторов.

Для определения ориентации сил и полей на практике часто используют мнемонические правила, одним из которых является правило буравчика, с успехом применяемое в электротехнике.

Определение

В узком понимании, правило буравчика – это мнемонический алгоритм, применяемый для определения пространственного направления магнитной индукции, в зависимости от ориентации электрического тока, возбуждающего магнитное поле.

Данное правило можно сформулировать следующим образом: Если острие буравчика (штопора, винта) направить вдоль вектора тока, то ориентация линий магнитной индукции совпадёт с направлением, в сторону которого вращается ручка буравчика в традиционном исполнении этого инструмента (с правым винтом) [ 1 ] (рис. 1.)

Правило буравчика для прямого проводника

Рис. 1. Правило буравчика для прямого проводника

На рисунке 1 показана схема для простейшего случая: по прямому участку проводника, в сторону от наблюдателя протекает электрический ток (стрелка синего цвета). Условный штопор направлен своим острым концом по вдоль линии по направлению тока. Если представить поступательное движение буравчика вдоль проводника, то направление линий, описываемых рукояткой штопора, совпадут с ориентацией магнитных линий электрического поля.

Главное правило

Рассмотренный нами пример является частным случаем алгоритма буравчика. Существует несколько вариантов формулировок правила, применяемых в различных ситуациях.

Общая, или главная формулировка, позволяет распространить данное правило на все случаи. Это вариант мнемонического правила, используемый для определения ориентации результирующей векторного произведения, называемого аксиальным вектором, а также для выбора связанного с этими векторами правого базиса (трёхмерной системы координат), что позволяет определить знак аксиального вектора.

Примечание: правый базис – условное соглашение, согласно которому выбирается декартовая система координат (положительный базис). Иногда полезно пользоваться зеркальным отражением декартовой системы (левый или отрицательный базис).

Главное правило позволяет определить направление в
пространстве аксиальных векторов, важных для вычислений:

  • угловой скорости;
  • параметров индукционного тока;
  • магнитной индукции.

Хотя
ориентация аксиального вектора является условной, она важна для расчётов: придерживаясь
принятого алгоритма выбора, легче производить вычисления, без риска перепутать
знаки. 

Во многих случаях применяют специальные формулировки, хорошо описывающие частные случаи в конкретной ситуации.

Правило правой руки

В электротехнике очень часто применяют интерпретацию буравчика для правой руки.

Действия можно сформулировать так: «Если отведённый в сторону большой палец правой руки расположить вдоль проводника так, чтобы он совпал с направлением электрического тока, то остальные пальцы будут указывать направление образованных электрическим полем магнитных силовых линий. (см. схему на рис. 2).

Иллюстрация правила правой руки

Рис. 2. Иллюстрация правила правой руки

Сформулированные выше алгоритмы применяются и для соленоидов. Но разница в том, что в случае с соленоидом, рукоятку буравчика вращают так, чтобы это движение совпадало с направлением токов в витках, а продвижение винта буравчика указывает на ориентацию вектора магнитных линий в соленоиде.

При использовании правой руки, пальцами охватывают (условно) катушку так, чтобы направление тока в витках совпадало с пространственным расположением пальцев. Тогда большой палец укажет на ориентацию вектора электромагнитных линий внутри катушки. На рисунке 3 изображены схемы, объясняющие алгоритмы определения направлений векторов для соленоидов.

Иллюстрация правила  правой руки для катушки

Рис. 3. Иллюстрация правила правой руки для катушки

Не трудно догадаться, что данные правила можно применять с целью определения направления тока. Например, если с помощью магнитной стрелки определить устремление линий магнитной индукции, то путём применения правила буравчика (как вариант его формулировки для правой руки), легко определяется, в какую сторону течёт ток.

Специальные правила

Рассмотрим варианты главного правила буравчика для частных случаев. Применение таких правил часто упрощает процесс вычислений.

Для векторного произведения

Расположите векторы так, чтобы их начальные точки совпадали. Для этой ситуации правило буравчика звучит так:

Если один из векторов сомножителей вращать кратчайшим способом до совпадения направлений со вторым вектором, то буравчик, вращающийся подобным образом, будет завинчиваться в сторону, куда указывает векторное произведение.

По циферблату часов

При расположении векторов способом совпадения их начальных точек можно определить направление вектора-произведения с помощью часовой стрелки. Для этого необходимо мысленно двигать кратчайшим путём один из векторов-сомножителей в сторону другого вектора. Тогда, если смотреть со стороны вращения этого вектора по часовой стрелке, то аксиальный вектор будет направлен вглубь циферблата.

Правила правой руки, для произведения векторов

Существует два варианта правила.

Первый вариант:

Если согнутые пальцы правой руки направить в сторону кратчайшего пути для совмещения вектора-сомножителя с другим сомножителем (векторы выходят из одной точки), то отведенный в сторону большой палец укажет направление аксиального вектора.

Второй вариант:

Если правую ладонь расположить таким образом, чтобы получилось совпадение большого пальца с первым вектором-сомножителем, а указательного – со вторым, то отведённый в сторону средний палец совпадёт с направлением вектора произведения.

Для базисов

Перечисленные выше правила применяются также для базисов.

Например, правило буравчика для правого базиса можно записать так:

При вращении ручки буравчика и векторов таким образом, чтобы первый базисный вектор по кратчайшему пути стремился ко второму, то штопор будет завинчиваться в сторону третьего базисного вектора.

Указанные правила универсальны. Их можно переписать для механики с целью определения векторов:

  • механического вращения (определение угловой скорости);
  • момента приложенных сил;
  • момента импульса.

Правила буравчика применяются также для уравнений Максвелла, что усиливает их универсальность.

Правило левой руки

В
электротехнике довольно часто возникают вопросы, связанные с определением силы
Ампера. Для решения задач подобного рода применяется алгоритм, называемый правилом
левой руки (иллюстрация на рис. 4) – мнемоническое правило, описывающее способ
определения направленности Амперовой силы, выталкивающей точечный заряд либо проводник,
по которому протекает электроток.

Алгоритм применения левой руки состоит в следующем: если левую ладонь будут перпендикулярно пронизывать силовые линии, а пальцы расположатся по направлению тока, то действующие на проводник силы будут устремляться в сторону, куда указывает оттопыренный большой палец.

Интерпретация для точечного заряда

Заметим, что сформулированное правило справедливо для решения задач по определению ориентации силы Лоренца. Перефразируем правило: если ладонь левой руки поместить в магнитное поле таким образом, чтобы линии индукции перпендикулярно входили в неё, а выпрямленные пальцы направить в сторону движения положительного заряда, тонаправление вектора силы Лоренца совпадёт с отставленным на 90º большим пальцем.

Визуальная интерпретация правила левой руки представлена на рисунке 5. Обратите внимание на то, что алгоритм действий для определения сил Ампера и Лоренца практически одинаков.

Интерпретация правил левой руки

Рис. 5. Интерпретация правил левой руки

Примечание: В случае с отрицательным зарядом вытянутые пальцы направляют в сторону, противоположную движению частицы.

Полезные сведения и советы

  1. Общепринято считать, что направление тока указывает в сторону от плюса к минусу. На самом деле, в проводнике упорядоченное перемещение электронов направлено от негативного полюса к позитивному. Поэтому, если бы перед вами стояла задача вычисления силы Лоренца для отдельного электрона в проводнике, следовало бы учитывать данное обстоятельство.
  2. По умолчанию мы рассматриваем винт (буравчик, штопор) с правой резьбой. Однако не следует забывать о существовании винтов с левой резьбой.
  3. При использовании правила часовой стрелки мы принимаем условие о том, что стрелки совершают движение слева направо. Известно, что в бывшем СССР производились часы с обратным ходом часового механизма. Возможно, такие модели существуют до сегодняшнего дня.

Советы: если вам необходимо определить пространственное расположение момента силы, под действием которой происходит вращение некоего тела – вращайте винт в ту же сторону. Условное врезание винта укажет на ориентацию вектора момента силы. Скорость вращения тела не влияет на направление вектора.

Полезно знать, что при вращении буравчика по ходу вращения тела, траектория его ввинчивания совпадёт с направлением угловой скорости.

Видео по теме

Правило буравчика простым языком

Содержание

  • 1 Определение
  • 2 Правая рука
  • 3 Вектор произведения
  • 4 Базис
  • 5 Соленоид
  • 6 Правило для угловой скорости
  • 7 Момент силы
  • 8 Левая рука
  • 9 Закон Ампера
  • 10 Сила Лоренца
  • 11 Заключение
  • 12 Видео по теме

Самая простая техника запоминания — это мнемонические правила. Они помогают понять сложное действие путем простого представления или сравнения. Статья даст подробное описание, что такое правило буравчика, кратко и понятно опишет его основное определение.

Буравчик

Также будет дано описание применения этого правила для обоснования различных физических законов. Дополнительно будет дано описание правила левой руки и двух мнемонических алгоритмов для определения направленности электромагнитной индукции.

Определение

Автором правила буравчика является физик-теоретик Петр Сигизмундович Буравчик. С его помощью было определено направление аксиального вектора с известным базисным вектором. Данное правило используется в случае мнемонического определения с применением правой и левой руки.

Такое правило является мнемоническим алгоритмом для установления электромагнитной индукции, на основе установленного направления движения электрического тока, который является возбудителем магнитных полей.

Правило буравчика

Более кратко и понятно это правило можно объяснить следующим образом:

  1. Буравчик направляется острием вниз и вкручивается по часовой стрелке.
  2. Его острие имитирует вектор направленности электрического тока.
  3. В момент ввинчивания ориентация линий магнитной индукции совпадает с направлением движения рукоятки буравчика.

Общепринятым правилом считается направление движения витка в правую сторону. Принимая этот факт, можно сделать вывод: при движении тока по кратчайшему пути в одном направлении, а именно от положительного значения к отрицательному, линии магнитной индукции будут направлены в правую сторону. Условие актуально для прямого проводника.

Правило буравчика имеет две основные разновидности:

  1. Правило правой руки.
  2. Правило левой руки.

Далее будет дано объяснение и конкретный пример для более простого понимания.

Правая рука

Правило правой руки используется для мнемонического определения направленности движения электромагнитной индукции. Формулировка у этого алгоритма следующая: необходимо сжать ладонь в кулак и поднять вверх большой палец. В этом жесте палец имитирует электрический проводник и направленность движения электрического тока. А 4 сжатых пальца указывают на направление линий магнитной индукции.

Правило правой руки

В физике принято считать эталоном именно буравчик. Для более легкого понимания этот инструмент можно представить в виде винта, шурупа с правосторонней резьбой или сверла.

Правило буравчика не окончательное определение. Оно может трактоваться совсем по-разному, когда требуется определить угловую скорость, магнитную индукцию, механическое вращение и момент импульса.

Вектор произведения

Буравчик может помочь в следующем вопросе – определение векторного произведения. Трактуется в этом случае такое правило следующим образом:

  1. Два вектора имеют общую точку отсчета, но различное направление.
  2. 1-й вектор сомножитель необходимо вращать по самому короткому пути до соотношения со 2-м вектором сомножителем.
  3. Во время такого вращения винт будет вращаться в сторону векторного произведения.

Вектор произведения

Это правило так же учитывает правостороннюю направленность резьбы буравчика. Также это правило применимо к направленности по часовой стрелке. Если вращать вектор сомножитель по часовой стрелке до того момента, пока он и второй вектор сомножитель не будут совмещены, то направление движения будет зависеть от того, кто вращает данный вектор. Так же вращение будет осуществляться внутрь плоскости (часов).

Для визуализации необходимо раздвинуть на правой руке большой, средний и указательный пальцы. Когда данное правило применяется в электродинамике, то можно получить следующее:

Направления пальцев руки и физических величин

При смещении всех трех пальцев получаем движение по часовой стрелке, а также сумму произведений всех векторов.

Базис

Базис — несколько векторов, расположенных в пространстве. При этом вектора базиса представляют собой упорядоченный набор. При таком условии любой из векторов может быть один раз представлен в виде линейной комбинации всех векторов из этого набора. Мнемонический алгоритм базиса следующий: буравчик закручивается в правую сторону, при этом базис X движется по короткому пути к базису Y, а значит по направлению к базису Z.

Для правила правой руки это будет выглядеть так:

  1. Средний палец является базисом X. Он движется к указательному пальцу или базису Y.
  2. При таком движении направление является правосторонним, а значит направлено в сторону базиса Z.

Для базисов также можно использовать правило часового циферблата, но только с использованием трех стрелок и при направленности вращения в правую сторону. Левая направленность учитывается только при конкретно поставленном условии.

Соленоид

Правило правой руки также позволяет определить, какое направление имеет магнитное поле в соленоидах и катушках индуктивности. Катушки также состоят из провода, но отличие заключается в том, что этот провод смотан в спираль, а значит не имеет прямой направленности. Так же при наличии магнитного сердечника, который взаимодействует с током, значение силы магнитного поля значительно увеличивается. Для того чтобы определить направленность линий магнитного поля в соленоиде, необходимо:

  1. Провод в катушке имеет значение «I» и является проводником электрического тока.
  2. Ток течет по катушке от большего потенциала к меньшему, а значит от «+» к «−». В этом случае катушка является вектором «В».
  3. Берем катушку правой рукой и вытягиваем большой палец вдоль самого элемента.

Соленоид

Данное правило трактуется следующим образом: в катушке имеется вектор магнитной индукции «B», направление которого совпадает с направлением большого пальца. 4 удерживающих катушку пальца указывают на направление протекания электрического тока. Данное правило так же основано на правостороннем закручивании буравчика. Такая направленность может использоваться при выполнении различных экспериментов, когда не требуется расчет и использованием левосторонней направленности, которую учитывают предварительно.

Правило для угловой скорости

Принцип правила правой руки можно применить, если требуется определить угловую скорость вращающегося объекта. Для начала необходимо учесть:

  1. Вектор скорости «v».
  2. Вектор угловой скорости «ω».
  3. Вектор, который проводят из неподвижной точки в данную «r».

Угловая скорость

Все эти параметры связаны между собой векторным произведением. Формула, которой мы пользуемся для этого произведения будет следующей:

Формула для расчета угловой скорости

Формулировка угловой скорости, при использовании правила буравчика звучит так. Если вращать буравчик в ту сторону, куда вращается тело, то направление завинчивания покажет направление угловой скорости данного тела. В случае правого вращения буравчика угловая скорость будет направлена в правую сторону и наоборот.

С помощью правила правой руки эта формулировка трактуется более просто: если зажать в правую руку вращающееся тело, то большой палец укажет вектор направления угловой скорости, а 4 остальных пальца укажут на направление вращения.

Момент силы

Правило буравчика применимо для определения момента силы. Расчет момента силы производится по следующей формуле:

Формула для расчета момента силы

В данном выражении используются следующие величины:

  • М — момент силы;
  • ri — вектор или радиус приложенный к точке i.
  • Fi — сила приложенная к точке i.

Правило для буравчика применяемое к моменту силы трактуется так: если буравчик вкручивается по направлению, в котором силы пытаются провернуть тело, он будет вкручиваться именно по направлению момента действующих сил. Например, при завинчивании шурупа, он будет вкручиваться по направлению вращения рукоятки отвертки, так как это направление создается силой движения руки человека.

Момент силы

Момент силы можно определить визуально. Применяемый в таком случае вариант правила правой руки будет следующим: если взять в правую руку предмет, сдавить его и выставить вперед большой палец, то 4 пальца укажут на направление кругового движения тела, а большой палец на направление момента силы.

Левая рука

Правило левой руки сильно отличается от правила буравчика. При помощи его определяют силу, действующую на проводник. Данный принцип применяет физика для следующих физических законов:

  • Закон Ампера.
  • Сила Лоренца.

Далее будет дана трактовка двух правил левой руки.

Закон Ампера

Принцип левой руки для закона Ампера гласит: если проводник находится между двумя магнитами, на него действует электромагнитная сила, выталкивающая заряд или смещающая проводник с заданного положения.

Сила Ампера и правило левой руки

При помощи левой руки можно проще описать это правило: ладонь принимает горизонтальное положение. В этот момент магнитная индукция будет перпендикулярна ладони. В таком положении отогнутый на 900 большой палец показывает направленность действующей силы, а остальные пальцы показывают направление электротока в проводнике.

При расчете силы Ампера используем следующую формулу:

Формула для расчета силы Ампера

В этой формуле используются следующие величины:

  • Fa — сила Ампера;
  • B — магнитная индукция;
  • I — сила тока;
  • ΔL — длина проводника;
  • a — величина угла между направлениями электротока и магнитной индукции.

Данный закон применяется при конструировании электрических двигателей и генераторов переменного тока.

Сила Лоренца

Правило левой руки позволяет отобразить направление силы Лоренца. Данный параметр определяет величину воздействия магнитного поля на заряженные частицы в проводнике. С помощью простых слов данное физическое явление можно трактовать следующим образом: на движущиеся заряженные частицы оказывает воздействие магнитная индукция. Направление действия этих сил строго перпендикулярно направлению движения частиц.

Сила Лоренца и правило левой руки

Используя левую руку можно визуально определить направленность воздействия линий магнитной индукции. Делается это следующим образом:

  1. Левая ладонь выпрямлена, при этом большой палец выставлен под углом 90 градусов. Ладонь представляет собой проводник, на который перпендикулярно воздействуют силы электромагнитной индукции (вектор B).
  2. Большой палец указывает на направление силы Лоренца (вектор Fл).
  3. 4 выпрямленных пальца указывают на направление положительного заряда. При условии, что по проводнику течет отрицательный заряд, направленность движения будет в сторону ладони, а не от нее. При расчетах это условие является очень важным.

Сила Лоренца рассчитывается по следующей формуле:

Формула для расчета силы Лоренца

В этой формуле:

  • Fл — сила Лоренца;
  • q — величина заряда;
  • v — скорость движения заряда;
  • B — магнитная индукция;
  • a — величина угла между направлением движения частиц и магнитной индукцией.

При расчете учитывается параметр частиц, которые протекают по проводнику. Также, учитывается направление движения частиц.

Заключение

Буравчик и его правило вращения помогают визуально представить многие физические законы. Для этого правила основополагающим является направление движения, на которое указывает большой палец. Эти простые правила можно легко использовать в повседневной жизни. Они облегчат понимание физических законов школьникам, помогут решить многие задачи.

Видео по теме

Правило буравчика

Правило буравчика — это техника запоминания, которая помогает определить направление магнитных стрелок в зависимости от тока.
Алгоритм кратко, точно и понятно показывает, куда ориентированы линии магнитного поля.

Содержание

  1. Определение
  2. Общее главное правило
  3. Для векторного произведения
  4. Для базисов
  5. Большой палец и правило правой руки для
  6. Соленоида:
  7. Магнитного поля
  8. Векторного произведения:
  9. Правило левой руки для
  10. Силы Ампера, в чём оно заключается
  11. Силы Лоренца и отличия от предыдущего
  12. Механическое вращение
  13. Правило буравчика для момента
  14. Определение направления тока буравчиком
  15. Определение направления вектора магнитной индукции с помощью правила буравчика
  16. Способы определения движения электрического тока и магнитного поля с помощью правила винта
  17. Разветвление взаимодействия проводников с током в опытах ампера
  18. Направление линий магнитной индукции внутри постоянного магнита

Определение

Учёный, открывший данный закон, — настоящая загадка истории: про него известно лишь то, что фамилия у него была Буравчик.
Большинство склоняются к тому, что звали его всё-таки Пётр Сигизмундович.
Про него сочиняют немало баек.
Даже с появлением закона буравчика связана забавная полушутка-полулегенда: якобы когда Буравчик смог сформулировать это правило (правда, название было не в честь его автора, а в честь тех предметов, которые действовали согласно данному закону), он отправился прямиком в Москву, на поклон к Михаилу Васильевичу Ломоносову.
Простота метода несколько смутила великого учёного, и он, погрузившись в размышления, отвернулся и начал, извините за выражение, ковыряться в носу.
На что Пётр Сигизмундович ехидно заметил, что Михаил Васильевич, используя свой палец как буравчик, в точности следует его закону.
После этого Ломоносов уже не колебался в принятии решения относительно изысканий Буравчика: правилу — быть!
Каждый физик формулирует это правило своими словами, однако суть всегда такова: если направление движения штопора будет проходить в одну и ту же сторону с направлением тока внутри проводника, то его ручка продемонстрирует сторону, в которую будет обращён вектор магнитной индукции.
В свою очередь, штопор интерпретировался в правило правой руки, которое, в свою очередь, послужило основой для другого мнемонического закона, правила левой руки, благодаря коим физика кажется намного проще. Всех их активно применяют во многих её областях — в этом немалую роль играет их простота вкупе с эффективностью, которые были отмечены ещё Ломоносовым, а также то, что звучат они кратко и понятно: с помощью правила буравчика можно определить, к примеру, сторону, в которую направлены угловая скорость, магнитная индукция, параметры индукционного тока и многое другое, что позволяет решать задачи.
В этой статье мы подробно рассмотрим все случаи этих правил и правила винта.

Общее главное правило

У правила есть несколько вариаций, используемых для частных случаев.
Однако главный вариант может применяться для многих случаев.
Удобнее всего использовать в векторном произведении положительный вектор и в базисе правую упорядоченную тройку.
При таком подходе у сомножителей будет положительный знак и не придется учитывать, где ставить минус, а где нет.
Правым базисом называется упорядоченная тройка векторов, расположенных так, что кратчайший путь по порядку осуществляется против часовой стрелки.
Если три пальца (кроме мизинца и безымянного) расставить перпендикулярно друг другу и принять их за оси Ox, Oy, Oz для среднего, указательного и большого пальцев соответственно, то получится правый базис.
Предпочтителен выбор положительного вектора или базиса в силу удобства подсчетов. Но возможно использование и левого базиса.
К примеру, его выбирают для задач, в которых применение положительного значения невозможно.

Для векторного произведения

Для него это правило:

  1. Если вы изобразите векторы так, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС (вектор-сомножитель) ко второму ВС самым быстрым способом;
  3. Тогда наш бур будет завинчиваться в сторону ВП (вектора-произведения).

Нетрудно заметить, как сильно изменилась формулировка: она заметно усложнилась и её намного тяжелее воспринимать без картинки, чем все остальные.
Однако можно несколько упростить себе задачу и переформулировать с использованием часовой стрелки:

  1. Если вы изобразите векторы таким образом, чтобы их начальные координаты совпали;
  2. А также приступите к кручению нашего первого ВС ко второму самым быстрым способом и станете наблюдать с того ракурса, чтобы это кручение располагалось для вас по часовой стрелке;
  3. Тогда ВП будет направлен от вас.

Правило буравчика

Использование стрелок делает всё намного проще, не правда ли?

Этого материала хватит для полного понимания темы.
В следующем абзаце предлагаю рассмотреть, как это же правило будет выглядеть для базисов, в частности, для правого.

Для базисов

Это правило будет работать и для базисов почти аналогично.
В правом базисе при вращении штопора, направленного по одному из векторов, по наиболее короткому пути ко второму вектору закручивание инструмента укажет направление третьего вектора.
Для простоты запоминания представляют настенные часы:
две вектора — это стрелки, а третий направлен к или от наблюдателя (выбор будет определять ориентацию всего базиса, то есть будет он правым или левым).

Правило буравчика
Правило буравчика универсально и подходит для определения многих векторов, так как зачастую в таких законах используются базисы и векторное произведение, которые подчиняются одним определенным законам.
Также используют для уравнения Максвелла, которые описывают поле индукции в сплошной среде и его влияние на точечные заряженные частицы.

Большой палец и правило правой руки для

Соленоида:

Во избежание дополнительных вопросов к статье, поясню значение этого слова поподробнее:
соленоид — проволочная спираль, иногда представляемая как катушка с током — неотъемлемая часть многих задач по физике и электротехнике.
Для соленоида правило правой руки может состоять из нескольких вариантов формулировок, но, как правило, так:

  1. Если вы возьмёте соленоид правой рукой;
  2. А после этого направите четыре пальца вдоль тока в витках;
  3. Тогда окажется, что ваш большой палец показывает, куда направлены линии напряжения магнитного поля, расположенные внутри катушки.

Как вы можете убедиться, ничего сложного здесь нет. Поэтому предлагаю рассмотреть другие примеры.

Магнитного поля

Правило правой руки для магнитного поля будет звучать так: если направить большой палец, отогнутый на 90 градусов от других, по движению проводника, а ладонь расположить так, чтобы линии поля «входили» в нее, то остальные пальцы совпадут с вектором индукционного тока.

Векторного произведения:

Это правило (в переписанном виде) отличается от предыдущих.
У него есть два варианта звучания.
Первая формулировка правила правой руки читайте:

  1. Если вы изобразите вектора таким образом, чтобы их начальные координаты совместились при наложении;
  2. Начнёте вращать первый BC (вектор-сомножитель) самым коротким способом ко второму ВС;
  3. А также расположите все пальцы правой руки (за исключением большого) так, чтобы они демонстрировали сторону, в направлении коей происходило вращение, словно вы сжимаете в руке цилиндр;
  4. Тогда ваш большой палец укажет направление ВП (вектора-произведения).

Вторая формулировка часто именуется «пистолетом» и звучит так:

  1. Если вы изобразите вектора таким образом, чтобы их начальные координаты совместились при наложении;
  2. Большой палец расположите по направлению первого BC;
  3. Указательный — по направлению второго ВС
  4. Тогда и только тогда ваш средний палец укажет примерное направление ВП.

Это мнемоническое правило довольно несложно запоминать как ФБР — на английском эта аббревиатура FBI:

  1. F — сила, которая протекает параллельно среднему пальцу;
  2. B — вектор магнитной индукции, направленный по указательному
  3. I — ток, протекающий по большому.

Кроме того, как я уже упоминала ранее, его ещё называют «пистолетом»: несложно заметить, что ваши пальцы при его выполнении будут расположены в виде пистолета.

Правило буравчика
На этом наше изучение правила правой руки подошло к концу, и мы обратимся к третьему (и кратчайшему) разделу статьи — правилу левой руки (ПЛР).

Правило левой руки для

Главное различие правил правой и левой руки в их назначении, а также в выборе ладони.
Правило левой руки применяется для определения силы Ампера и силы Лоренца, в то время как правой рукой можно определить векторы разных величин (например, магнитную индукцию, угловую скорость, вращающий момент).

Силы Ампера, в чём оно заключается

Первое правило левой руки связано с силой Андре-Мари Ампера, кою французский учёный открыл в тысяча восемьсот двадцатом году — сразу после закона Ампера.
Принцип его работы следующий:

  1. Поместите свою левую ладонь так, чтобы в её внутреннюю сторону перпендикулярно ей входили линии индукции магнитного поля;
  2. Все пальцы, за исключением большого, направьте по электротоку
  3. В таком случае, ваш левый большой палец, который должен образовать прямой угол с остальными, покажет направление силы, которая будет действовать со стороны магнитного поля на проводник с током — то есть силы Ампера.

Однако это только один вариант ПЛР.

Силы Лоренца и отличия от предыдущего

Сила магнитного поля, которая действует на заряженную частицу точечного размера, называется силой Лоренца.
Эта величина необходима для дополнения уравнения Максвелла и описания поведения электромагнитного поля, заряженных частиц.
Определяют направление правилом для левой руки.
Выполняется этот алгоритм следующим способом.
Пальцы (кроме мизинца и безымянного) располагают перпендикулярно друг другу (сначала большой и указательный в виде буквы «Г», а затем средний отставляют под прямым углом к ним обоим).
Соответствующий палец укажет направление:

  • Силы Лоренца — большой;
  • Магнитных линий — указательный;
  • Тока — средний.

Главное отличие в положении руки.
Обратите внимание, что в предыдущем случае мы использовали раскрытую ладонь, а в этом лишь тремя пальцами, сложенными в пистолет.

Механическое вращение

Важные сокращения: ПБ — правило буравчика, УС — угловая скорость, ППР — правило правой руки.
Формулировка ПБ для механического вращения  определяется следующим образом:
Если вы начнёте завинчивать бур в направлении, в коем крутится корпус, он будет закручен в ту сторону, куда будет стремится УС.
Как и ожидалось, здесь всё просто и понятно.
Но вот ППР в механике  определяется заметно иначе.
Это правило в данном случае выглядит и работает так:

  1. Если вы возьмёте некий объект в правую руку;
  2. Затем станете крутить его в ту сторону, в кою вам указывают все пальцы, кроме большого;
  3. Тогда последний оставшийся палец укажет нам, куда будет стремится УС при таком вращении.

Абсолютно также вы сможете найти сторону, в которую будет направлен угловой момент.

Это было ожидаемо, потому как угловой момент прямо пропорционален угловой скорости с положительным (!) коэффициентом.
Аналогично это будет выглядеть и для момента импульса.
Но вернёмся к нашему чудесному правилу винта и посмотрим, как такой подход работает для момента силы.

Правило буравчика для момента

Момент сил — это вектор силы, которая вызывает вращательное движение какого-то объекта.
Вращательный момент связан с другими величинами, например, работой, совершаемой во время вращения тела.
Хоть алгоритм и работает аналогично, сформулируем правило винта (буравчика) для момента силы.
Если прокручивать штопор туда, куда силы смещают тело, то направление завинчивания инструмента укажет направление вращательного момента.
Для правой руки правило звучит так: мысленно взяв предмет в правую руку, предмет двигают в сторону направления четырех пальцев (их ориентация должна совпадать с той стороной, куда силы пытаются сместить объект), большой распрямленный палец же укажет вектор вращающего момента.

Определение направления тока буравчиком

Как было уже сказано выше, направление тока можно определить опираясь на ПБ.
Делается это следующим образом:

  1. Ваша правая рука должна взять проводник;
  2. После этого вам надо оттопырить четыре пальца по направлению линий индукций магнитного поля;
  3. Тогда ваш большой палец, поднятый вверх, укажет направление электротока.

Довольно удобная пошаговая инструкция, не правда ли?

Правило буравчика
Кроме того, переформулировав наше утверждение, можно определить направление вектора магнитной индукции, о чём будет более подробно сказано в абзаце ниже.

Определение направления вектора магнитной индукции с помощью правила буравчика

Чтобы определить направление линий магнитной индукции, сделаем следующее.
Острием буравчика укажем вектор силы тока, тогда сторона, в которую инструмент будет закручиваться, покажет направление магнитной индукции для этого проводника.
Инструмент выпускают с разным направлением закручивания, поэтому подразумеваем, что используется традиционный, закручивающийся направо.
Если вы привыкли к другому варианту, вы можете представлять, что штопор выкручивается.
С правой рукой все также: если представить, что исследуемый проводник в обхватывающей правой ладони, а большой палец направлен по направлению течения электрического тока, то загнутые оставшиеся пальцы будут совпадать с линиями магнитной индукции.

Способы определения движения электрического тока и магнитного поля с помощью правила винта

Для того, чтобы вы могли найти ту сторону, куда стремится магнитное поле, вернее, магнитных линий возле проводника с током, было придумано правило правого винта, которое  определяется так: если вы начнёте ввинчивать буравчик согласно тому, как направлен ток в проводнике, тогда сторона, в которую будет вращаться ручка буравчика, продемонстрирует нам, куда будут стремиться линии магнитного поля.
А вот для электротока правило формулируется несколько иначе:

  1. Вначале следует выполнить обхват рукой провода;
  2. Затем необходимо сжать все пальцы, кроме главного, в кулак;
  3. Большой же палец, который надо будет поместить вертикально, укажет вам путь перемещения электрического тока.

Итак, мы рассмотрели самое главное: правило буравчика, правило правой и левой руки.
Последние два пункта будут дополнять нашу статью и демонстрировать специальные случаи, которые будут позволять знать материал безукоризненно.

Разветвление взаимодействия проводников с током в опытах ампера

Когда Эрстед открыл возникновение индукции в проводнике с током, Ампер вдохновился и начал свои исследования.
Ученый провел серию экспериментов с параллельными проводниками, в которых доказал, что вокруг заряженной частицы образуется магнитное поле.
Благодаря своим наблюдениям он пришел к выводу, что если пустить по проводникам ток в одну сторону, то они притягиваются, а если в разные стороны, то отталкиваются.

Правило буравчика
Объяснить это можно с помощью правила буравчика.
В первом случае видно, что магнитные поля каждого проводника идут по направлению к наблюдателю в точке между ними, индукции мешают друг другу, провода отталкиваются.
И наоборот во втором случае: в точке, где у правого проводника линии идут на наблюдателя, у левого они идут от него.

Направление линий магнитной индукции внутри постоянного магнита

Об этом можно сказать, пожалуй, меньше всего. Учёные считают, что линии напряжения магнитного поля, кое создаётся постоянным магнитом, направлены — разумеется, внутри магнита — от южного к северному полюсу.
На этом моя статья подошла к концу. Надеюсь, что вы были довольны этой информацией, позволяющей досконально разобраться в вашей теме, и что она поможет вам в ваших изысканиях в области науки.

Содержание:

Еще в глубокой древности было замечено, что некоторые железные руды притягивают к себе железные тела. Древние греки называли куски таких руд магнитными камнями, вероятно, по названию города Магнесия, откуда привозили руду. Сейчас их называют естественными магнитами. Существуют также искусственные магниты. Сегодня вы ознакомитесь с некоторыми свойствами магнитов, узнаете о магнитном взаимодействии, а также о связи магнитных и электрических явлений.

Свойства постоянных магнитов:

В 5 классе, изучая курс природоведения, вы узнали о магнитных явлениях и выяснили, что некоторые тела имеют свойство притягивать к себе железные предметы и сами притягиваются к ним.

Тела, которые длительное время сохраняют магнитные свойства, называют постоянными магнитами.

Первую попытку научного подхода к изучению магнетизма предпринял в XIII в. французский физик Пьер Пелерен де Марикур (точные даты жизни неизвестны) в своем трактате «Послание о магните». Более системно свойства постоянных магнитов исследовал Вильям Гильберт (1544-1603) — английский физик и врач, один из основателей науки об электричестве. Приведем основные из этих свойств.

Основные свойства постоянных магнитов
1. Магнитное действие магнита на разных участках его поверхности — разное; участки, где магнитное действие проявляется сильнее всего, называют полюсами магнита. 2. Магнит имеет два полюса — северный N и южный S*. Невозможно получить магнит только с одним полюсом.

3. Одноименные полюсы магнитов отталкиваются, разноименные — притягиваются.

4. При нагревании постоянного магнита до определенной температуры, которую называют точкой Кюри, его магнитные свойства исчезают
Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Полосовой магнит

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Подковообразный магнит

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерамиОт гол. noord — север; zuiden (нем. Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами) — юг.

Опыты Эрстеда и Ампера:

Еще ученые Древней Греции предполагали, что магнитные и электрические явления связаны, однако установить эту связь удалось только в начале XIX в.

15 февраля 1820 г. датский физик Ханс Кристиан Эрстед (1777-1851) демонстрировал студентам опыт с нагреванием проводника электрическим током. Проводя опыт, ученый заметил, что во время прохождения тока магнитная стрелка, расположенная вблизи проводника, отклоняется от направления «север — юг» и устанавливается перпендикулярно проводнику (рис. 1.1). Когда ток в проводнике отсутствовал, стрелка возвращалась в начальное положение. Так было установлено, что электрический ток оказывает некоторое магнитное действие.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис 1.1. Схема опыта Эрстеда (Здесь и далее наличие символа I означает, что в проводнике течет ток; стрелка рядом показывает направление тока.)

Французский математик и физик Андре Мари Ампер (1775-1836) впервые услышал об опытах X. Эрстеда 4 сентября 1820 г. и уже через неделю продемонстрировал взаимодействие двух параллельно расположенных проводников с током (рис. 1.2). Ампер также показал, что катушки, в которых проходит электрический ток, ведут себя как постоянные магниты (рис. 1.3). Ученый пришел к выводу: поскольку проводники электрически нейтральны (не заряжены), их притягивание или отталкивание не может объясняться действием электрических сил, — «поведение» проводников является следствием действия магнитных сил.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 1.2. Схема опыта А. Ампера. Если в двух параллельных проводниках проходят токи одного направления, проводники притягиваются (а); если проходят токи противоположных направлений, проводники отталкиваются (б)

Определение магнитного поля

При изучении электрических явлений в 8 классе вы узнали о том, что в пространстве около заряженного тела существует поле, которое называют электрическим, и что именно посредством этого поля осуществляется электрическое взаимодействие между заряженными телами и частицами.

Около намагниченного тела и около проводника с током тоже существует поле — его называют магнитным. Магнитное взаимодействие осуществляется с некоторой скоростью посредством магнитного поля (первым к такому выводу пришел английский физик Майкл Фарадей (1791-1867)).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 1.3. Катушки с током ведут себя как постоянные магниты

Рассмотрим взаимодействие постоянного магнита и катушки с током (рис. 1.3, б). Катушка с током создает магнитное поле. Магнитное поле распространяется в пространстве и начинает действовать на постоянный магнит (намагниченное тело) — магнит отклоняется. Магнит тоже создает собственное магнитное поле, которое, в свою очередь, действует на катушку с током, — и катушка тоже отклоняется.

Заметим, что магнитное поле существует также около любой движущейся заряженной частицы и около любого движущегося заряженного тела и действует с некоторой силой на заряженные тела и частицы, движущиеся в этом магнитном поле.

Обратите внимание: мы не можем увидеть магнитное поле, но при этом оно, как и электрическое поле, абсолютно реально — это форма материи.

Магнитное поле — это форма материи, которая существует около намагниченных тел, проводников с током, движущихся заряженных тел и частиц и действует на другие намагниченные тела, проводники с током, движущиеся заряженные тела и частицы, расположенные в этом поле.

Подводим итоги:

Тела, длительное время сохраняющие свои магнитные свойства, называют постоянными магнитами. Основные свойства постоянных магнитов: 1) магнитное действие магнита сильнее всего проявляется вблизи его полюсов; 2) одноименные полюсы магнитов отталкиваются, разноименные — притягиваются; невозможно получить магнит только с одним полюсом; 3) при нагревании постоянного магнита до определенной температуры (точка Кюри) его магнитные свойства исчезают.

Магнитное взаимодействие осуществляется посредством магнитного поля. Магнитное поле — это форма материи, которая существует около намагниченных тел, проводников с током, движущихся заряженных тел и частиц и действует на расположенные в этом поле намагниченные тела, проводники с током, движущиеся заряженные тела и частицы.

Индукция магнитного поля, линии магнитной индукции

Мы не можем увидеть магнитное поле, однако для лучшего понимания магнитных явлений важно научиться его изображать. В этом помогут магнитные стрелки. Каждая такая стрелка — это маленький постоянный магнит, который легко поворачивается в горизонтальной плоскости (рис. 2.1). О том, как графически изображают магнитное поле и какая физическая величина его характеризует, вы узнаете из этого параграфа.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.1. Магнитная стрелка — это постоянный магнит. Пунктирной линией показана ось магнитной стрелки

Силовая характеристика магнитного поля

Если заряженная частица движется в магнитном поле, то поле будет действовать на частицу с некоторой силой. Значение этой силы зависит от заряда частицы, направления и значения скорости ее движения, а также от того, насколько сильным является поле.

Силовой характеристикой магнитного поля является магнитная индукция.

Магнитная индукция (индукция магнитного поля) — это векторная физическая величина, характеризующая силовое действие магнитного поля.

Магнитную индукцию обозначают символом Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Единица магнитной индукции в СИтесла; названа в честь сербского физика Николы Теслы (1856-1943):

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.2. В магнитном поле магнитные стрелки ориентируются определенным образом:северный полюс стрелки указывает направление вектора индукции магнитного поля в данной точке

За направление вектора магнитной индукции в данной точке магнитного поля принято направление, на которое указывает северный полюс магнитной стрелки, установленной в этой точке (рис. 2.2).

Обратите внимание! Направление силы, с которой магнитное поле действует на движущиеся заряженные частицы или на проводник с током, или на магнитную стрелку, не совпадает с направлением вектора магнитной индукции.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерамиКак выразить 1 Тл через другие единицы СИ, по какой формуле можно определить модуль магнитной индукции, как направлена сила, с которой магнитное поле действует на проводник с током.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Магнитные линии:

  • вне магнита выходят из северного полюса магнита и входят в южный;
  • всегда замкнуты (магнитное поле — это вихревое поле);
  • наиболее густо расположены у полюсов магнита;
  • никогда не пересекаются

Рис. 2.3. Линии магнитного поля полосового магнита

Изображение магнитного поле

На рис. 2.2 видим, как ориентируются магнитные стрелки в магнитном поле: их оси как будто образуют линии, а вектор магнитной индукции в каждой точке направлен вдоль касательной к линии, проходящей через эту точку.

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

С помощью магнитных линий графически изображают магнитные поля:

  1. за направление линии магнитной индукции в данной точке принято направление вектора магнитной индукции;
  2. чем больше модуль магнитной индукции, тем ближе друг к другу чертят магнитные линии.

Рассмотрев графическое изображение магнитного поля полосового магнита, можно сделать некоторые выводы (см. на рис. 2.3). Заметим, что данные выводы справедливы для магнитных линий любого магнита.

Картину магнитных линий можно воспроизвести с помощью железных опилок. Возьмем подковообразный магнит, положим на него пластинку из оргстекла и через ситечко будем насыпать на пластинку железные опилки. В магнитном поле каждый кусочек железа намагнитится и превратится в маленькую «магнитную стрелку». Импровизированные «стрелки» сориентируются вдоль магнитных линий магнитного поля магнита (рис. 2.4).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.4. Цепочки железных опилок воспроизводят картину линий магнитной индукции магнитного поля подковообразного магнита

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.5. Участок, на котором магнитное поле однородно

Однородное магнитное поле

Магнитное поле в некоторой части пространства называют однородным, если в каждой его точке векторы магнитной индукции одинаковы как по модулю, так и по направлению (рис. 2.5).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.6. Магнитное поле внутри полосового магнита (а) и между двумя магнитами, обращенными друг к другу разноименными полюсами (б), можно считать однородным

На участках, где магнитное поле однородно, линии магнитной индукции параллельны и расположены на одинаковом расстоянии друг от друга (рис. 2.5, 2.6). Магнитные линии однородного магнитного поля, направленные к нам, принято изображать точками (рис. 2.7, а) — мы как будто видим «острия стрел», летящих к нам. Если магнитные линии направлены от нас, то их изображают крестиками — мы как будто видим «оперения стрел», летящих от нас (рис. 2.7, б).

В большинстве случаев мы имеем дело с неоднородным магнитным полем, — полем, в разных точках которого векторы магнитной индукции имеют разные значения и направления. Магнитные линии такого поля искривлены, а их плотность разная.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.7. Изображение линий магнитной индукции однородного магнитного поля, которые перпендикулярны плоскости рисунка и направлены к нам (а); направлены от нас (б)

Магнитное поле Земли

Для изучения земного магнетизма Вильям Гильберт изготовил постоянный магнит в виде шара (модель Земли). Расположив на шаре компас, он заметил, что стрелка компаса ведет себя так же, как на поверхности Земли.

Эксперименты позволили ученому предположить, что Земля — это огромный магнит, а на севере нашей планеты расположен ее южный магнитный полюс. Дальнейшие исследования подтвердили гипотезу В. Гильберта.

На рис. 2.8 изображена картина линий магнитной индукции магнитного поля Земли.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.8. Схема расположения магнитных линий магнитного поля планеты Земля

Линии магнитной индукции магнитного поля Земли не параллельны ее поверхности. Если закрепить магнитную стрелку в карданном подвесе, то есть так, чтобы она могла свободно вращаться как вокруг горизонтальной, так и вокруг вертикальной осей, стрелка установится под углом к поверхности Земли (рис. 2.9).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.9. Магнитная стрелка в карданном подвесе

Магнитное поле Земли издавна помогало ориентироваться путешественникам, морякам, военным и не только им. Доказано, что рыбы, морские млекопитающие и птицы во время своих миграций ориентируются по магнитному полю Земли. Так же ориентируются, ища путь домой, и некоторые животные, например кошки.

  • Заказать решение задач по физике

Магнитные бури

Исследования показали, что в любой местности магнитное поле Земли периодически, каждые сутки, изменяется. Кроме того, наблюдаются небольшие ежегодные изменения магнитного поля Земли. Случаются, однако, и резкие его изменения. Сильные возмущения магнитного поля Земли, которые охватывают всю планету и продолжаются от одного до нескольких дней, называют магнитными бурями. Здоровые люди их практически не ощущают, а вот у тех, кто имеет сердечно-сосудистые заболевания и заболевания нервной системы, магнитные бури вызывают ухудшение самочувствия.

Магнитное поле Земли — своеобразный «щит», который защищает нашу планету от летящих из космоса, в основном от Солнца («солнечный ветер»), заряженных частиц. Вблизи магнитных полюсов потоки частиц подлетают довольно близко к атмосфере Земли. При возрастании солнечной активности космические частицы попадают в верхние слои атмосферы и ионизируют молекулы газа — на Земле наблюдаются полярные сияния (рис. 2.10).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 2.10. При возрастании солнечной активности увеличивается площадь темных пятен на Солнце (а), а на Земле происходят магнитные бури и полярные сияния (б)

Подводим итоги:

Магнитная индукция Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами — это векторная физическая величина, характеризующая силовое действие магнитного поля. Направление вектора магнитной индукции совпадает с направлением, на которое указывает северный полюс магнитной стрелки. Единица магнитной индукции в СИ — тесла (Тл).

Условные направленные линии, в каждой точке которых касательная совпадает с линией, вдоль которой направлен вектор магнитной индукции, называют линиями магнитной индукции или магнитными линиями.

Линии магнитной индукции всегда замкнуты, вне магнита они выходят из северного полюса магнита и входят в южный, гуще расположены в тех областях магнитного поля, где модуль магнитной индукции больше.

Планета Земля имеет магнитное поле. Вблизи северного географического полюса Земли расположен ее южный магнитный полюс, вблизи южного географического полюса — северный магнитный полюс.

Магнитное поле тока

Вы уже знаете, что около проводника с током существует магнитное поле. Исследуем магнитное поле прямого проводника с током. Для этого пропустим проводник через лист картона (перпендикулярно листу), насыплем на картон железные опилки и замкнем цепь. В магнитном поле проводника опилки намагнитятся и воссоздадут картину линий магнитной индукции магнитного поля прямого проводника с током — концентрические окружности, охватывающие проводник (см. рис. 3.1). А как определить направление магнитных линий?

Правило Буравчика

Расположим рядом с проводником несколько магнитных стрелок и пустим в проводнике ток — стрелки сориентируются в магнитном поле проводника (рис. 3.1, а). Северный полюс каждой стрелки укажет направление вектора индукции магнитного поля в данной точке, а значит, и направление магнитных линий этого поля.

С изменением направления тока в проводнике изменится и ориентация магнитных стрелок (рис. 3.1, б). Это означает, что направление магнитных линий зависит от направления тока в проводнике.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 3.1. Определение направления линий магнитной индукции магнитного поля проводника с током с помощью магнитных стрелок

Определять направление линий магнитной индукции с помощью магнитной стрелки не всегда удобно, поэтому используют правило буравчика:

Если вкручивать буравчик по направлению тока в проводнике, то направление вращения ручки буравчика укажет направление магнитных линий магнитного поля тока (рис. 3.2, а);

или иначе:

Если направить большой палец правой руки по направлению тока в проводнике, то четыре согнутых пальца укажут направление магнитных линий магнитного поля тока (рис. 3.2, б).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 3.2. Определение направления линий магнитного поля проводника с током с помощью правила буравчика

От чего зависит модуль индукции магнитного поля проводника с током

Вспомните: магнитное действие проводника с током первым обнаружил X. Эрстед в 1820 г. А вот почему это открытие не было сделано раньше? Дело в том, что с увеличением расстояния от проводника магнитная индукция созданного им поля быстро уменьшается. Поэтому, если магнитная стрелка расположена не вблизи проводника с током, магнитное действие тока почти незаметно.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 3.3. Линии магнитной индукции магнитного поля прямого проводника с током. Проводник расположен перпендикулярно плоскости рисунка; крестик Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами означает, что сила тока в проводнике направлена от нас

Магнитная индукция зависит также от силы тока: с увеличением силы тока в проводнике магнитная индукция созданного им магнитного поля увеличивается.

Магнитное поле катушки с током

Свернем изолированный провод в катушку и пустим по проводу ток. Если теперь вокруг катушки разместить магнитные стрелки, то к одному торцу катушки стрелки повернутся северным полюсом, а к другому — южным (рис. 3.4). Это означает, что около катушки с током существует магнитное поле.

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 3.4. Исследование магнитного поля катушки с током с помощью магнитных стрелок

Как и полосовой магнит, катушка с током имеет два полюса — южный и северный. Полюсы катушки расположены на ее торцах, и их легко определить с помощью правой руки:

Если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на северный полюс катушки, то есть направление вектора магнитной индукции внутри катушки (рис. 3.5).

Правило Буравчика в физике - правило правой и левой руки кратко и понятно с формулами и примерами

Рис. 3.5. Определение полюсов катушки с током с помощью правой руки

Сравнив магнитные линии постоянного полосового магнита и катушки с током, увидим, что они очень похожи (рис. 3.6). Заметим: магнитная стрелка, подвешенная катушка с током и подвешенный полосовой магнит ориентируются в магнитном поле Земли одинаково.

Подводим итоги:

Около проводника с током существует магнитное поле. Магнитная индукция поля, созданного током, уменьшается с увеличением расстояния от проводника и увеличивается с увеличением силы тока в проводнике.

Направление линий магнитной индукции магнитного поля проводника с током можно определить с помощью магнитных стрелок или правила буравчика.

Катушка с током, как и постоянный магнит, имеет два полюса. Их можно определить с помощью правой руки: если четыре согнутых пальца правой руки направить по направлению тока в катушке, то отогнутый на 90° большой палец укажет направление на ее северный полюс.

  • Шунт и добавочное сопротивление
  • Электродвижущая сила
  • Электрические измерительные приборы
  • Электрическое поле Земли
  • Закон Ома для цепи переменного тока с последовательным соединением сопротивлений
  • Сила и закон Ампера
  • Закон взаимодействия прямолинейных параллельных проводников с током
  • Сила Лоренца

Магнитное поле представляет собой особую форму материи, которая существует вокруг движущихся электрических зарядов, или электрических токов. Если внести магнитную стрелку в магнитное поле, то мы увидим, что она будет ориентироваться в нём.
В магнитном поле вокруг проводника с током магнитные стрелки и мелкие железные опилки расположатся по концентрическим окружностям вдоль линий магнитного поля. При этом если направление тока в проводнике изменить на противоположное, то все стрелки повернутся на (180°).

Рисунок (1). Действие магнитного поля проводника с током на магнитную стрелку

Рисунок (2). Правило буравчика

С помощью правила буравчика (правого винта) по направлению тока можно определить направление линий магнитного поля, а по направлению линий магнитного поля — направление тока.

Asset 22.svg

Рисунок (3). Направление тока и направление линий его магнитного поля

Для определения направления линий магнитного поля соленоида применяют правило правой руки.

2.png

Если направления четырех пальцев правой руки совпадают с направлением тока в витках соленоида, то направление большого пальца совпадает с направлением линий магнитной индукции внутри соленоида.

Соленоид подобен магниту, когда по нему протекает электрический ток. Также как и магнит, соленоид имеет полюсы: северный и южный.  Северным полюсом является тот конец соленоида, из которого выходят магнитные линии. В данном случае северным полюсом является левый конец. Значит, правый конец будет южным полюсом.

Таким образом, используя правило правой руки, можно определить магнитные полюсы соленоида, если известно направление тока в его витках. И наоборот, если известны полюсы, то можно определить направление тока. 

Источники:

http://school-collection.edu.ru/, Единая коллекции цифровых образовательных ресурсов.

Изображения:

Рисунок 1. Действие магнитного поля проводника с током на магнитную стрелку.
https://ds04.infourok.ru/uploads/ex/08fa/0018ad91-29af6560/hello_html_mec6ce57.gif

https://slide-share.ru/napravlenie-toka-i-linij-ego-magnitnogo-polya-pravilo-buravchikaissledovaniya-1638

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Excel как найти связи с другими
  • Как найти закономерность геометрических фигур
  • Как найти объект по номеру телефона
  • Как найти папку эцп на компьютере
  • Как найти с какой скоростью двигался автомобиль

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии