Как найти базис пересечения векторов

Пусть
заданы два подпространства R1
и R2
n-мерного
пространства R.

Определение:
Если каждый вектор x
пространства R
можно, и притом единственным образом,
представить как сумму двух векторов:

x
=
x1
+
x2,

где


, то говорят, что пространство R
разложено в прямую сумму подпространств
R1
и R2.
Это записывают так:

R
= R1
+ R2,

Теорема. Для
того, чтобы пространство
R
разлагалось в прямую сумму подпространств

R1
и R2,достаточно,
чтобы:

  1. Подпространства

    R1
    и
    R2

    имели только один общий вектор
    x
    =
    0 (нулевой вектор).

  2. Сума
    размерностей этих подпространств была
    равна размерности пространства
    R.

Пусть
имеем два произвольных подпространства
R1
и R2
линейного пространства R.
Подпространство пересечения
R1
и R2
— это совокупность векторов, принадлежащих
обоим подпространствам R1
и R2:

Пример
12
4. Пусть
R1
и R2
– два двумерных подпространства
трехмерного прос-транства (две плоскости,
проходящие через начало координат).
Тогда их пересечение

есть одномерное подпространство (прямая,
по которой эти плоскости пересекаются).

По
двум подпространствам
R1
и R2

можно построить еще одно подпространство,
которое называют суммой:
векторами этого подпространства являются
всевозможные суммы вида:

x
=
x1
+
x2, (*)

где

,
его обозначают:

отличие от прямой суммы двух подпрос-транств,
запись (*) элемента из R
может быть неоднозначной. Легко проверить,
что построенные элементы (*) образуют
подпространство.

Теорема. Сумма
размерностей

R1
и R2,
равна размерности их суммы плюс
размерность пересечения.

Пример
12
5. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Решение:
Нетрудно заметить, что векторы a1
и
a2,
b1
и
b2:
— линейно независимы. Согласно
вышеприведенной теореме запишем
размерность пересечения

в виде d
= k+r-s,
где k
= 2 – число независимых векторов,
порождающих подпространство R1;
r
= 2 – число независи-мых векторов,
порождающих подпространство R2;
s
– число независимых векторов, порождающих
подпространство

(его предстоим вычислить).

Применяя
один из способов вычисления ранга
системы векторов, получаем: s
= 3. В таком случае размерность пересечения
d
= 2 + 2 — 3 = 1/

Найдем базис из
условия:

c
= x1
a1+
x2
a
2 =
x3
b1+
x4
b
2

или

Решая
эту систему одним из способов, изложенных
в Гл.5, получим: x1
=
-s;
x2
=
4s;
x3
=
-3s;
x4
=
s,
где s
– произвольная постоянная. Принимая
s
= -1, получим:

c
= a1
4 a2
= 3
b1
b2
= (5, -2, -3, -4).

Ответ:
базис пересечения подпространств: c
=
a1
4
a2
=
3
b1
b2
= (5, -2, -3, -4).

Решите
примеры
:

Пример
12
6. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Ответ:
базис пересечения подпространств: c
=
-4a1
+
13
a2
=
8 b1+
3b2
= (5, 9, -13, 27).

Пример
127
. Найдем
базис пересечения подпространств

, если R1
натянут на векторы a1
и
a2,
а R2
– на векторы b1
и
b2:

, ,

, .

Ответ:
базис пересечения подпространств: c
=
2a1
3
a2
=

b1+
b2
= (1, 3, -1, 1).

Соседние файлы в папке СРС

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Нахождение дополнения, суммы и пересечения подпространств

Нахождение алгебраического дополнения подпространства

Для заданного подпространства Ltriangleleft mathbb{R}^n требуется найти алгебраическое дополнение подпространства L^{+}, т.е. такое подпространство L^{+} triangleleftmathbb{R}^n, что mathbb{R}^n=Loplus L^{+}.

В зависимости от способа описания подпространства L, используем одно из следующих двух утверждений.

1. Если подпространство Ltriangleleft mathbb{R}^n задано как линейная оболочка L=operatorname{Lin}(a_1,ldots,a_k) столбцов матрицы A=begin{pmatrix} a_1&cdots&a_kend{pmatrix}, то множество решений однородной системы A^Tx=o является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L=operatorname{Lin}(a_1,a_2,ldots,a_k)quad Rightarrowquad L^{+}= Bigl{A^Tx=oBigr}.

(8.16)

2. Если подпространство Ltriangleleft mathbb{R}^n задано как множество решений однородной системы Ax=o m уравнений с n неизвестными, то линейная оболочка столбцов a_1^{tau},ldots, a_m^{tau} транспонированной матрицы A^T=begin{pmatrix}a_1^{tau}&cdots& a_m^{tau}end{pmatrix} является его алгебраическим дополнением L^{+}triangleleft mathbb{R}^n, т.е.

L={Ax=o}quad Rightarrowquad L^{+}=operatorname{Lin} (a_1^{tau},ldots,a_m^{tau}),

(8.17)

где a_i^{tau} — i-й столбец матрицы A^T.

Разумеется, в (8.16) и (8.17) указано одно из возможных алгебраических дополнений подпространства L^{+} (см. свойство 3 алгебраических дополнений подпространств).

Докажем сначала справедливость (8.16) в одномерном случае (k=1), а потом в общем. Пусть L=operatorname{Lin}(a) — одномерное подпространство R^n, a=begin{pmatrix}alpha_1&cdots&alpha_nend{pmatrix}^T — ненулевой столбец. Найдем алгебраическое дополнение подпространства L. Рассмотрим уравнение a^Tx=o в координатной форме: alpha_1x_1+ldots+ alpha_nx_n=0. Множество {a^Tx=o} решений однородной системы, состоящей из одного уравнения, образует подпространство L' размерности (n-1). Найдем пересечение Lcap L'. Подставляя элемент x=lambda a линейной оболочки L в уравнение a^Tx=o, получаем lambda[(alpha_1)^2+ (alpha_2)^2+ldots+(alpha_n)^2]=0, что возможно только при lambda=0, так как ane o. Следовательно, элемент x из L принадлежит подпространству L' только тогда, когда x — нулевой столбец, т.е. Lcap L'={o}. Учитывая, что dim{L}+dim{L'}=n, заключаем, что L' — алгебраическое дополнение подпространства L в mathbb{R}^ncolon, Loplus L'=mathbb{R}^n.Таким образом,

operatorname{Lin}(a)oplus{a^Tx=o}=mathbb{R}^n.

(8.18)

Учитывая (8.18), докажем (8.16) в общем случае (kgeqslant1). Представим L=operatorname{Lin}(a_1,ldots,a_k) в виде суммы L=L_1+ldots+L_k, где L_i=operatorname{Lin}(a_i), i=1,ldots,k. Из (8.15) следует, что (L_1+ldots+L_k)oplus (L_1^{+}+ldots+L_k^{+})= mathbb{R}^n. Согласно (8.18), множество L_1^{+}={(a_i)^Tx=o} решений однородной системы, состоящей из одного уравнения, дополняет L_i до всего пространства mathbb{R}^n. Пересечение множеств решений отдельных уравнений дает, разумеется, множество L_1^{+} capldotscap L_k^{+}={A^Tx=o} решений системы этих уравнений. Поэтому (L_1+ ldots+L_k)oplus{A^Tx=o}=mathbb{R}^n, что и требовалось доказать. Утверждение (8.17) доказывается аналогично, используя (8.18).


Пример 8.10. Найти алгебраическое дополнение подпространства L=operatorname{Lin}[(t-1)^2,(t+1)^3] в пространстве P_3(mathbb{R}) многочленов не более, чем 3-й степени.

Решение. Сначала нужно переформулировать задачу для арифметического пространства (см. следствие теоремы 8.3 об изоморфизме конечномерных пространств). Для этого возьмем в P_3(mathbb{R}) стандартный базис mathbf{e}_1(t)=1, mathbf{e}_2(t)=t, mathbf{e}_3(t)=t^2, mathbf{e}_4(t)=t^3. Пространство P_3(mathbb{R}) изоморфно mathbb{R}^4. Найдем координаты многочленов mathbf{a}_1(t)=(t-1)^2 и mathbf{a}_2(t)=(t+1)^3 в стандартном базисе. Раскладывая mathbf{a}_1(t) по базису, получаем:

mathbf{a}_1(t)= (t-1)^2= 1-2t+t^2=1cdot mathbf{e}_1(t)+(-2)cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t),

т.е. многочлену mathbf{a}_1(t) соответствует координатный столбец a_1= begin{pmatrix}1&-2&1&0end{pmatrix}^T — элемент пространства mathbb{R}^4. Аналогично получаем координатный столбец a_2= begin{pmatrix} 1&3&3&1end{pmatrix}^T для многочлена mathbf{a}_2(t).

Таким образом, исходная задача сводится к следующей: требуется найти алгебраическое дополнение подпространства L=operatorname{Lin}(a_1,a_2) в пространстве mathbb{R}^4. Используя правило (8.16), получаем, что L^{+} — это множество решений системы A^Tx=o, где A^T=begin{pmatrix} a_1&a_2 end{pmatrix}^T= begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}, т.е. системы begin{cases} x_1-2x_2+x_3=0,\ x_1+3x_2+3x_3+x_4=0. end{cases}

Решаем ее методом Гаусса. Приводим матрицу системы к упрощенному виду, прибавляя ко второй строке первую, умноженную на (-1), поделив вторую строку на 5, а затем прибавив ее, умноженную на 2, к первой:

A^T=begin{pmatrix}1&-2&1&0\ 1&3&3&1end{pmatrix}sim begin{pmatrix}1&-2&1&0\ 0&5&2&1 end{pmatrix}sim begin{pmatrix}1&0&9/5&2/5\ 0&1&2/5&1/5 end{pmatrix}!.

Базисные переменные x_1,,x_2, свободные — x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-frac{9}{5}x_3-frac{2}{5}x_4; x_2=-frac{2}{5}x_3-frac{1}{5}x_4. Находим фундаментальную систему решений. Подставляя стандартные наборы свободных переменных (x_3=1,,x_4=0 и x_3= 0,,x_4=1), получаем решения: varphi_1=begin{pmatrix}-dfrac{9}{5}&-dfrac{2}{5}& 1&0end{pmatrix}^T, varphi_2=begin{pmatrix}-dfrac{2}{5}&-dfrac{1}{5}&0&1 end{pmatrix}^T, которые образуют фундаментальную систему решений и являются базисом алгебраического дополнения L^{+}=operatorname{Lin}(varphi_1,varphi_2) Полученный результат переносим в пространство многочленов. По координатному столбцу varphi_1 находим многочлен

varphi_1(t)=-frac{9}{9}cdot mathbf{e}_1(t)-frac{2}{5}cdot mathbf{e}_2(t)+ 1cdot mathbf{e}_3(t)+0cdot mathbf{e}_4(t)= -frac{9}{5}-frac{2}{5},t+t^2.

Аналогично получаем varphi_2(t)= -frac{2}{5}-frac{1}{5}t+t^3. Искомое алгебраическое дополнение имеет вид

L^{+}=operatorname{Lin}!left[left( -frac{9}{5}-frac{2}{5},t+t^2 right)!,,left( -frac{2}{5} -frac{1}{5}t+ t^3right)right]!,

Проверим равенство Lcap L^{+}={mathbf{o}}. Для этого приравняем между собой линейные комбинации многочленов mathbf{a}_1(t),,mathbf{a}_2(t) и varphi_1(t),,varphi_2(t):

alpha(1-t)^2+beta(1+t)^3= gamma!left(-frac{9}{5}-frac{2}{5},t+t^2 right)+delta! left(-frac{2}{5} -frac{1}{5}t+ t^3right)!.

Преобразовывая, получаем

(alpha+beta)cdot t^3+(alpha+3beta-gamma)cdot t^2+left(-2alpha+ 3beta+ frac{2}{5},gamma+frac{1}{5},deltaright)!cdot t+alpha+beta+ frac{9}{5},gamma+ frac{2}{5},delta=0.

Чтобы это равенство выполнялось тождественно, все его коэффициенты должны быть равны нулю:

begin{cases}beta-delta=0,\ alpha+3beta-gamma=0,\ -2alpha+3beta+ frac{2}{5} gamma+ frac{1}{5}delta=0,\ alpha+beta+ frac{9}{5}gamma+ frac{2}{5}delta=0, end{cases} Leftrightarrowquad underbrace{begin{pmatrix}0&1&0&-1\ 1&3&-1&0\ -2&3&2/5&1/5\ 1&1&9/5&2/5 end{pmatrix}}_{B}!cdot! begin{pmatrix}alpha\ beta\ gamma\ delta end{pmatrix}= begin{pmatrix} 0\0\0\0 end{pmatrix}!.

Ранг матрицы B этой системы равен 4 (находится, например, методом Гаусса). Поэтому однородная система имеет только нулевое решение alpha=beta= gamma= delta=0. Таким образом, равенство Lcap L^{+}={mathbf{o}} выполняется.


Нахождение алгебраической суммы подпространств

Для заданных подпространств A и B пространства mathbb{R}^n требуется найти размерность и базис их алгебраической суммы A+B. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}) и mathbf{B} =operatorname{Lin} (mathbf{b}_1,ldots, mathbf{b}_{k_2}). Тогда, приписывая к образующим mathbf{a}_1,ldots, mathbf{a}_{k_1} одного подпространства образующие mathbf{b}_1,ldots, mathbf{b}_{k_2} другого подпространства, получаем образующие суммы подпространств mathbf{A} и mathbf{B}:

left.{begin{gathered}mathbf{A} =operatorname{Lin}(mathbf{a}_1,ldots, mathbf{a}_{k_1}),hfill\ mathbf{B}=operatorname{Lin}(mathbf{b}_1,ldots, mathbf{b}_{k_2}) end{gathered}}!right}quad Rightarrowquad mathbf{A}+mathbf{B}=operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1},mathbf{b}_1,ldots, mathbf{b}_{k_2}),

(8.19)

поскольку любой вектор mathbf{v}in(mathbf{A}+mathbf{B}) имеет вид mathbf{v}= underbrace{alpha_1 mathbf{a}_1+ldots+ alpha_{k_1}mathbf{a}_{k_1} }_{mathbf{v}_1inmathbf{A}}+ underbrace{beta_1 mathbf{b}_1+ldots+ beta_{k_1}mathbf{b}_{k_2} }_{mathbf{v}_2inmathbf{B}}. Базис суммы mathbf{A}+ mathbf{B}= operatorname{Lin} (mathbf{a}_1,ldots, mathbf{a}_{k_1}, mathbf{b}_1, ldots, mathbf{b}_{k_2}) можно найти как максимальную подсистему линейно независимых столбцов.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, переходя к внутреннему описанию, сводим задачу к предыдущему случаю, а именно нужно выполнить следующие действия:

1) для каждой однородной системы Ax=o и Bx=o найти фундаментальные системы решений varphi_1,ldots,varphi_{n-r} и psi_1,ldots,psi_{n-r} соответственно. При этом получим A=operatorname{Lin} (varphi_1,ldots,varphi_{n-r}) и B=operatorname{Lin}(psi_1,ldots,psi_{n-r}), где r_{A}=operatorname{rg}A, r_{B}=operatorname{rg}B;

2) по правилу (8.19) найти сумму mathbf{A}+mathbf{B}= operatorname{Lin} (varphi_1, ldots,varphi_{n-r},psi_1,ldots,psi_{n-r}).


Пример 8.11. Найти размерность и базис алгебраической суммы mathbf{A}+mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если подпространство mathbf{A} задано системой уравнений

begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0,end{cases}

подпространство mathbf{B} — линейной оболочкой своих образующих:

mathbf{B}=operatorname{Lin}(b_1,b_2),quad b_1=begin{pmatrix}-4&3&1&-1 end{pmatrix}^T,quad b_2=begin{pmatrix}1&1&1&1end{pmatrix}^T.

Решение. Образующие подпространства mathbf{A} были найдены в примере 8.9: mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1= begin{pmatrix}-6&4&1&0end{pmatrix}^T, a_2=begin{pmatrix}-2&1&0&1 end{pmatrix}^T. По правилу (8.19) получаем mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1,b_2). Найдем базис этого подпространства как максимальную линейно независимую подсистему столбцов. Составляем из этих столбцов матрицу и приводим ее методом Гаусса к ступенчатому виду:

begin{gathered}begin{pmatrix}-6&-2&-4&1\ 4&1&3&1\ 1&0&1&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 4&1&3&1\ -6&-2&-4&1\ 0&1&-1&1 end{pmatrix}sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&-2&2&7\ 0&1&-1&1 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&4 end{pmatrix}sim begin{pmatrix} 1&0&1&1\ 0&1&-1&-3\ 0&0&0&1\ 0&0&0&0 end{pmatrix}!.end{gathered}

Первый, второй и четвертый столбцы полученной матрицы линейно независимы. Значит, соответствующие столбцы a_1,,a_2,,b_2 исходной матрицы так же линейно независимы (так как выполнялись элементарные преобразования только над строками). Поэтому они являются базисом mathbf{A}+mathbf{B} и dim(mathbf{A}+ mathbf{B})=3.


Нахождение пересечения подпространств

Для заданных подпространств mathbf{A} и mathbf{B} пространства mathbb{R}^n требуется найти размерность и базис их пересечения mathbf{A}cap mathbf{B}. Рассмотрим методику решения этой задачи для двух случаев описания подпространств.

Пусть подпространства заданы как множества решений однородных систем уравнений (внешнее описание): mathbf{A}={Ax=o} и mathbf{B}={Bx=o}. Тогда, приписывая к системе Ax=o, задающей одно подпространство, систему Bx=o, задающую другое подпространство, получаем систему begin{cases} Ax=o,\ Bx=o,end{cases} определяющую пересечение подпространств:

left.{begin{gathered}mathbf{A}={Ax=o},\ mathbf{B}={Bx=o} end{gathered}}right}quad Rightarrowquad mathbf{A}cap mathbf{B}=left{begin{pmatrix}A\ Bend{pmatrix}!x=oright}!.

(8.20)

Базисом пересечения служит ее фундаментальная система решений.

Пусть подпространства mathbf{A} и mathbf{B} пространства mathbb{R}^n заданы линейными оболочками своих образующих (внутреннее описание): mathbf{A}=operatorname{Lin}(a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}). Переходя от внутреннего описания подпространств к внешнему, можно свести задачу к предыдущему случаю. Однако удобнее сделать иначе. Пересечению mathbf{A}cap mathbf{B} принадлежат только такие mathbf{x}in mathbb{R}^n, которые можно представить как равные между собой линейные комбинации столбцов a_1,ldots,a_{k_1} и столбцов b_1,ldots,b_{k_2} соответственно:

mathbf{x}=alphacdot mathbf{a}_1+ldots+alpha_{k_1}cdot mathbf{a}_{k_1}= beta_{1}cdot mathbf{b}_{1}+ldots+beta_{k_2}cdot mathbf{b}_{k_2}.

(8.21)

Представим второе равенство в (8.21) в матричном виде Aalpha=Bbeta, где A=begin{pmatrix}a_1&cdots&a_{k_1}end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} — матрицы, составленные из данных столбцов, alpha= begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T, beta= begin{pmatrix} beta_1&cdots&beta_{k_2}end{pmatrix}^T — столбцы коэффициентов линейных комбинаций. Равенство Aalpha=Bbeta можно рассматривать как одно родную систему Aalpha-Bbeta=o n уравнений с (k_1+k_2) неизвестными alpha и beta. Каждому решению этой системы соответствует вектор mathbf{x}= Aalpha=Bbeta, при надлежащий пересечению mathbf{A}cap mathbf{B}. Однако, на практике удобнее вместо системы Aalpha-Bbeta=o рассматривать однородную систему Aalpha+Bbeta=o, решения которой обладают теми же свойствами (тогда вектор mathbf{x}= Aalpha=Bbeta при надлежит пересечению mathbf{A}cap mathbf{B}.

Поэтому для нахождения пересечения подпространств mathbf{A}= operatorname{Lin} (a_1,ldots,a_{k_1}) и mathbf{B}= operatorname{Lin}(b_1,ldots,b_{k_2}) и базиса пересечения нужно выполнить следующие действия.

1. Составить блочную матрицу (Amid B) коэффициентов однородной системы уравнений Aalpha+Bbeta=o, где матрицы A=begin{pmatrix} a_1&cdots&a_{k_1} end{pmatrix}, B=begin{pmatrix} b_1&cdots&b_{k_2}end{pmatrix} образованы из заданных столбцов.

2. Для однородной системы с матрицей (Amid B) найти фундаментальную матрицу Phi. Матрица Phi имеет размеры (k_1+k_2)times (k_1+k_2-r), где r=operatorname{rg}(Amid B).

3. Из первых k_1 строк матрицы Phi составить матрицу Phi_{alpha}= (E_{k_1}mid O)Phi. Столбцы матрицы Phi_{alpha}= begin{pmatrix} varphi_1&cdots &varphi_{k_1+k_2-r}end{pmatrix} содержат искомые коэффициенты alpha=begin{pmatrix}alpha_1&cdots&alpha_{k_1}end{pmatrix}^T линейных комбинаций (8.21).

4. Записать пересечение mathbf{A}cap mathbf{B} как линейную оболочку столбцов матрицы APhi_{alpha}: Acap B=operatorname{Lin}(Avarphi_1,ldots, Avarphi_{k_1+k_2-r}).

5. Найти базис пересечения как максимальную линейно независимую подсистему образующих Avarphi_1,ldots, Avarphi_{k_1+k_2-r}.


Пример 8.12. Найти размерности и базисы суммы mathbf{A}+ mathbf{B} и пересечения mathbf{A}cap mathbf{B} подпространств mathbf{A},mathbf{B}triangleleft mathbb{R}^4, если они заданы линейными оболочками своих образующих: mathbf{A}= operatorname{Lin}(a_1,a_2,a_3) mathbf{B}= operatorname{Lin}(b_1,b_2,b_3), где

a_1=begin{pmatrix}1\1\1\1end{pmatrix}!,quad a_2=begin{pmatrix}1\-1\1\-1 end{pmatrix}!,quad a_3=begin{pmatrix}1\3\1\3end{pmatrix}!,quad b_1=begin{pmatrix} 1\2\0\2 end{pmatrix}!,quad b_2=begin{pmatrix}1\2\1\2end{pmatrix}!,quad b_3=begin{pmatrix} 3\1\3\1 end{pmatrix}!.

Решение. Найдем базис и размерность суммы mathbf{A}+ mathbf{B}. Составим из данных столбцов блочную матрицу

(Amid B)= begin{pmatrix}a_1&a_2&a_3,mid, b_1&b_2&b_3 end{pmatrix}= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 1&-1&3!!&vline!!& 2&2&1\ 1&1&1!!&vline!!& 0&1&3\ 1&-1&3!!&vline!!& 2&2&1 end{pmatrix}!.

Элементарными преобразованиями над строками приведем ее к ступенчатому виду:

(Amid B)sim begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&-2&2!!&vline!!& 1&1&-2end{pmatrix}sim begin{pmatrix} 1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0 end{pmatrix}= (A'mid B').

По ступенчатому виду определяем, что первый, второй и четвертый столбцы линейно независимы. Следовательно, из 6 образующих a_1,a_2,a_3, b_1,b_2,b_3 подпространства mathbf{A}+mathbf{B} максимальную линейно независимую подсистему составляют столбцы a_1,a_2,b_1 (в этих столбцах расположен базисный минор матрицы). Следовательно, эти столбцы служат базисом суммы: mathbf{A}+ mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3. По ступенчатому виду матрицы (Amid B) можно также определить размерности подпространств. В блоке A' две ненулевых строки, следовательно, dimmathbf{A}= operatorname{rg}A= operatorname{rg}A'=2. Ненулевые строки блока В’ линейно независимы, следовательно, dimmathbf{B}= operatorname{rg}B= operatorname{rg}B'=3.

Найдем базис и размерность пересечения mathbf{A}cap mathbf{B}~ (k_1=k_2=3,~ r=operatorname{rg}(Amid B)=3).

1. Первый пункт алгоритма выполнен выше: матрица (Amid B) однородной системы Aalpha+Bbeta=o приведена к ступенчатому виду (A'mid B').

2. Находим фундаментальную систему решений (используя алгоритм, описанный в разд. 5.5). Приводим матрицу (A'mid B') системы к упрощенному виду:

(A'mid B')= begin{pmatrix}1&1&1!!&vline!!& 1&1&3\ 0&-2&2!!&vline!!& 1&1&-2\ 0&0&0!!&vline!!& -1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}sim begin{pmatrix}1&0&2!!&vline!!& 0&3/2&2\ 0&1&-1!!&vline!!& 0&-1/2&1\ 0&0&0!!&vline!!& 1&0&0\ 0&0&0!!&vline!!& 0&0&0end{pmatrix}!.

Базисные переменные: alpha_1,,alpha_2,,beta_1; остальные переменные — свободные. Выражаем базисные переменные через свободные: alpha_1=-2alpha_3-frac{3}{2} beta_2-2beta_3; alpha_2=alpha_3+frac{1}{2}beta_2-beta_3; beta_1=0. Придавая свободным переменным наборы значений

alpha_3=1,quad beta_2=0,quad beta_3=0;qquad alpha_3=0,quad beta_2=2,quad beta_3=0;qquad alpha_3=0,quad beta_2=0,quad beta_3=1,

получаем линейно независимые решения

varphi_1=begin{pmatrix} -2&1&1&0&0&0 end{pmatrix}^T,quad varphi_2= begin{pmatrix} -3&1&0&0&2&0 end{pmatrix}^T,quad varphi_3=begin{pmatrix}-2&-1&0&0&0&1 end{pmatrix}^T.

т.е. фундаментальная матрица имеет вид

Phi= begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0\ 0&0&0\ 0&2&0\ 0&0&1 end{pmatrix}!.

3. Из первых трех строк (k_1=3) матрицы Phi составляем матрицу Phi_{alpha}= begin{pmatrix} -2&-3&-2\ 1&1&-1\ 1&0&0 end{pmatrix}.

4. Вычисляем произведение

AcdotPhi_{alpha}= begin{pmatrix}1&1&1\ 1&-1&3\ 1&1&1\ 1&-1&3 end{pmatrix}! cdot! begin{pmatrix}-2&-3&-2\ 1&1&-1\ 1&0&0end{pmatrix}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}= begin{pmatrix}o&c_1&c_2end{pmatrix}!.

Столбцы этой матрицы являются образующими пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(o,c_1,c_2), где o — нулевой столбец, c_1= begin{pmatrix} -2&-4&-2&-4 end{pmatrix}^T, c_2=begin{pmatrix}-3&-1&-3&-1 end{pmatrix}^T.

5. Найдем базис пересечения mathbf{A}cap mathbf{B}. Для этого матрицу APhi_{alpha} приводим к ступенчатому виду

AcdotPhi_{alpha}= begin{pmatrix}0&-2&-3\ 0&-4&-1\ 0&-2&-3\ 0&-4&-1end{pmatrix}sim begin{pmatrix}0&2&3\ 0&0&5\ 0&0&0\ 0&0&0 end{pmatrix}sim begin{pmatrix}0&1&3/2\ 0&0&1\ 0&0&0\ 0&0&0 end{pmatrix}!.

По ступенчатому виду определяем, что последние два столбца матрицы APhi_{alpha} линейно независимы. Следовательно, два столбца c_1,c_2 являются базисом пересечения mathbf{A}cap mathbf{B}= operatorname{Lin}(c_1,c_2) и dim(mathbf{A}cap mathbf{B})=2.

Проверим размерность пересечения подпространств, которую вычислим, используя формулу (8.13):

dim(mathbf{A}cap mathbf{B})= dim mathbf{A}+dim mathbf{B}-dim(mathbf{A}+ mathbf{B})= 2+3-3=2,

что совпадает с найденной ранее размерностью.


Пример 8.13. Найти размерности и базисы пересечения mathbf{A}cap mathbf{B} и суммы mathbf{A}+ mathbf{B} подпространств mathbf{A}, mathbf{B}triangleleft mathbb{R}^4, если они заданы однородными системами уравнений:

mathbf{A}colon, begin{cases}x_1+x_2+2x_3+x_4=0,\ 2x_1+3x_2+x_4=0,\ 3x_1+4x_2+2x_3+2x_4=0;end{cases}quad mathbf{B}colon, begin{cases}x_1+x_2+x_3=0,\ 2x_1+3x_2+x_3+2x_4=0,\ x_1+2x_2+2x_4=0.end{cases}

Решение. Обозначим матрицы данных систем через mathbf{A} и mathbf{B} соответственно. По правилу (8.20) пересечение mathbf{A}cap mathbf{B} описывается однородной системой begin{cases}Ax=o,\Bx=o.end{cases} Найдем базис пересечения — фундаментальную систему решений этой однородной системы уравнений. Составляем матрицу системы begin{pmatrix}dfrac{A}{B}end{pmatrix} и приводим ее к ступенчатому виду, а затем к упрощенному виду:

begin{gathered} begin{pmatrix}dfrac{A}{B}end{pmatrix}= begin{pmatrix}1&1&2&1\ 2&3&0&1\ 3&4&2&2\hline 1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&2&1\ 0&1&-4&-1\ 0&1&-4&-1\hline 0&0&-1&-1\ 0&1&-3&0\ 0&1&-2&1 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&0&0\hline 0&0&-1&-1\ 0&0&1&1\ 0&0&2&2 end{pmatrix}sim begin{pmatrix}1&1&2&1\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim\[2pt] sim begin{pmatrix}1&0&6&2\ 0&1&-4&-1\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&0&-4\ 0&1&0&3\ 0&0&1&1\hline 0&0&0&0\ 0&0&0&0\ 0&0&0&0end{pmatrix}!.end{gathered}

Базисные переменные: x_1,x_2,x_3, свободная переменная — x_4. Выражаем базисные переменные через свободную: x_1=4x_4; x_2=-3x_4; x_3=-x_4. Фундаментальная система содержит одно решение varphi_1= begin{pmatrix} 4&-3&-1&1end{pmatrix}^T, которое получаем, задавая x_4=1. Следовательно, mathbf{A}cap mathbf{B}= operatorname{Lin}(varphi_1) и dim(mathbf{A}cap mathbf{B}).

Найдем теперь сумму mathbf{A}+mathbf{B}. Фундаментальная система решений однородной системы Ax=o была найдена в примере 8.9. Следовательно,

mathbf{A}=operatorname{Lin}(a_1,a_2), где a_1=begin{pmatrix} -6&4&1&0 end{pmatrix}^T,~~ a_2=begin{pmatrix}-2&1&0&1end{pmatrix}^T,~~ dim{mathbf{A}}=2.

Найдем фундаментальную систему решений однородной системы Bx=o. Для этого приводим матрицу системы к ступенчатому виду, а затем к упрощенному:

B=begin{pmatrix}1&1&1&0\ 2&3&1&2\ 1&2&0&2 end{pmatrix}sim begin{pmatrix} 1&1&1&0\ 0&1&-1&2\ 0&1&-1&2 end{pmatrix}sim begin{pmatrix}1&1&1&0\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}sim begin{pmatrix}1&0&2&-2\ 0&1&-1&2\ 0&0&0&0 end{pmatrix}!.

Базисные переменные: x_1,,x_2, свободные переменные: x_3,,x_4. Выражаем базисные переменные через свободные: x_1=-2x_3+2x_4; x_2=x_3-2x_4. Фундаментальная система состоит из двух решений b_1=begin{pmatrix}-2&1&1&0end{pmatrix}^T, b_2=begin{pmatrix}2&-2&0&1end{pmatrix}^T, которые находим, придавая свободным переменным стандартные наборы значений (x_3=1,~x_4=0 и x_3=0,~x_4=1). Следователь но, mathbf{B}= operatorname{Lin}(b_1,b_2) и dim mathbf{B}=2.

По правилу (8.19) находим сумму mathbf{A}+mathbf{B}= operatorname{Lin} (a_1,a_2,b_1,b_2). Чтобы определить базис, составим из столбцов a_1,,a_2,, b_1,,b_2 матрицу и приведем ее к ступенчатому виду:

begin{pmatrix}-6&-2&-2&2\ 4&1&1&-2\ 1&0&1&0\ 0&1&0&1end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&-2&4&2\ 0&1&0&1 end{pmatrix}sim begin{pmatrix} 1&0&1&0\ 0&1&-3&-2\ 0&0&-2&-2\ 0&0&3&3 end{pmatrix}sim begin{pmatrix}1&0&1&0\ 0&1&-3&-2\ 0&0&1&1\ 0&0&0&0 end{pmatrix}!.

Первые три столбца линейно независимы. Следовательно, mathbf{A}+mathbf{B}= operatorname{Lin}(a_1,a_2,b_1) и dim(mathbf{A}+mathbf{B})=3.

Проверим размерность суммы подпространств. По формуле (8.13) получаем

dim(mathbf{A}+mathbf{B})= dimmathbf{A}+dimmathbf{B}-dim(mathbf{A}cap mathbf{B})=2+2-1=3,

что совпадает с найденной ранее размерностью.


Нахождение относительных алгебраических дополнений подпространств

Пусть дана цепочка подпространств mathbf{A}triangleleft mathbf{B}triangleleft mathbb{R}^n. Требуется найти относительное дополнение mathbf{A}^{+}cap mathbf{B} подпространства mathbf{A} до подпространства mathbf{B}.

Рассмотрим случай внешнего описания подпространств — как множеств решений однородных систем уравнений: mathbf{A}={Ax=o} и mathbf{B}={Ax=o}. Согласно (8.17) базис пространства mathbf{A}^{+} образуют линейно независимые столбцы транспонированной матрицы A^T. Тогда относительное дополнение mathbf{A}^{+}cap mathbf{B} составляют такие векторы x=A^Ty, которые удовлетворяют системе Bx=o. Если обозначить через Phi фундаментальную матрицу системы BA^Ty=o, то линейно независимые столбцы матрицы A^TPhi являются максимальной системой векторов подпространства mathbf{B}, линейно независимой над mathbf{A}, т.е. базисом относительного дополнения.

На практике нахождение базиса mathbf{A}^{+}cap mathbf{B} удобнее производить, используя ступенчатые виды матриц A и B, согласно следующей методике.

1. Привести матрицы A и B при помощи элементарных преобразований строк к ступенчатому виду и удалить нулевые строки. В результате по лучим матрицы (A)_{text{st}} и (B)_{text{st}} модифицированного ступенчатого вида (строки каждой из этих матриц линейно независимые).

2. Найти фундаментальную матрицу Phi однородной системы уравнений (B)_{text{st}}(A)_{text{st}}^Ty=o.

3. Вычислить матрицу (A)_{text{st}}^TPhi. Ее столбцы образуют искомый базис mathbf{A}^{+}cap mathbf{B}.

Рассмотрим случай внутреннего описания подпространства mathbf{A} как линейной оболочки своих образующих: mathbf{A}=operatorname{Lin}(a_1,ldots,a_k). Согласно (8.16) множество решений системы уравнений A^Tx=o (матрица A= begin{pmatrix}a_1&cdots&a_kend{pmatrix} составлена из образующих) является алгебраическим дополнением mathbf{A}^{+}. Тогда множество решений системы begin{cases}A^Tx=o,\Bx=o,end{cases}!!Leftrightarrow, begin{pmatrix} dfrac{A^T}{B} end{pmatrix}!x=o является относительным дополнением mathbf{A}^{+}cap mathbf{B}, а ее фундаментальная система решений — базисом относительного дополнения.

Замечание 8.10. Способы описания подпространств комплексного линейного пространства, а также методы решения типовых задач аналогичны рассмотренным. В отличие от вещественного арифметического пространства mathbb{R}^n вместо операции транспонирования матрицы в комплексном арифметическом пространстве mathbb{C}^n нужно использовать операцию сопряжения матрицы.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Предложите, как улучшить StudyLib

(Для жалоб на нарушения авторских прав, используйте

другую форму
)

Ваш е-мэйл

Заполните, если хотите получить ответ

Оцените наш проект

1

2

3

4

5

Сообщения без ответов | Активные темы | Избранное

Правила форума

В этом разделе нельзя создавать новые темы.

Если Вы хотите задать новый вопрос, то не дописывайте

его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».

Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.

Не ищите на этом форуме халяву

, правила запрещают участникам публиковать готовые решения стандартных учебных задач. Автор вопроса обязан привести свои попытки решения

и указать конкретные затруднения.

Обязательно просмотрите тему

Правила данного раздела, иначе Ваша тема может быть удалена

или перемещена в Карантин, а Вы так и не узнаете, почему.

 

Помогите найти базис пересечения линейных оболочек

Сообщение30.05.2013, 18:13 


30/05/13
12

Даны такие оболочки:
$a_1=(1,2,1)$
$a_2=(1,1,-1)$
$a_3=(1,3,3)$

$b_1=(1,2,2)$
$b_2=(2,3,-1)$
$b_3=(1,1,-3)$

Я нашел базис суммы этих оболочек. Но вот с пересечением возникли проблемы. Решал с помощью подстановки справа к каждой оболочке единичной матрицы. Не получается ответ. Гугл дал очень разностороннюю информацию о алгоритмах, по которым это можно найти. Если у кого есть проверенный, действенный алгоритм, прошу поделитесь! Очень надо! :) Заранее большое спасибо! :)

Профиль  

svv 

 Re: Помогите найти базис пересечения линейных оболочек

Сообщение30.05.2013, 23:43 

Заслуженный участник


23/07/08
10076
Crna Gora

Будем считать, что ${a_i}_1^m$ и ${b_i}_1^n$ — это базисы линейных оболочек (построенные каким-нибудь способом из двух первоначально данных систем векторов). Стало быть, система ${a_i}$ линейно независима, система ${b_i}$ также.

Любой вектор $p$, входящий в пересечение оболочек, является как линейной комбинацией ${a_i}$, так и линейной комбинацией ${b_i}$:
$p=sumlimits_1^m alpha_i a_i = -sumlimits_1^n beta_i b_i$
Значит, если пересечение содержит ненулевые векторы, система уравнений
$sumlimits_1^m alpha_i a_i + sumlimits_1^n beta_i b_i =0$
относительно $alpha_i$, $beta_i$ имеет нетривиальное решение. Наоборот, любое нетривиальное решение этой системы дает ненулевой вектор $p$, входящий в пересечение оболочек.

Матрица системы уравнений состоит из $m+n$ столбцов, каждый столбец содержит компоненты соответствующего вектора $a_i$ или $b_i$.

В Вашем случае обе системы векторов линейно зависимы: $2a_1=a_2+a_3$, $b_2=b_1+b_3$. Чтобы получить базисы, выбросим $a_3$ и $b_3$. Составляем систему уравнений:$$begin{bmatrix} 1 & 1 & 1 & 2 \ 2 & 1 & 2 & 3 \ 1 & -1 & 2 & -1 end{bmatrix}begin{bmatrix}alpha_1\alpha_2\beta_1\beta_2end{bmatrix}=begin{bmatrix} 0\ 0\ 0end{bmatrix}$$Решение: $alpha_1=2, alpha_2=1, beta_1=-1, beta_2=-1$, что дает вектор
$p=2a_1+a_2=b_1+b_2=(3, 5, 1)$
Он является линейной комбинацией как векторов $a_i$, так и $b_i$, значит, принадлежит пересечению линейных оболочек.

Это мы нашли один вектор. Попробуйте сами придумать, как получить остальные, если они есть.

Профиль  

Rebirther 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение31.05.2013, 17:13 


30/05/13
12

Спасибо вам за такой развернутый и умный ответ. Честно говоря, такого способа еще не встречал. :) И это вроде бы самый простой.
В ответ был указан только вектор, который вы нашли. Других не вижу смысла искать. Можно лучше попробовать следующий пример.
Но вот хотелось бы узнать, почему вы выкинули именно векторы $a_3$ и $b_3$?

Профиль  

ewert 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение31.05.2013, 17:25 

Заслуженный участник


11/05/08
32162

почему вы выкинули именно векторы $a_3$ и $b_3$?

Очевидно, что размерность каждой линейной оболочки не меньше двух (иначе все векторы в каждой оболочке были бы пропорциональными). Но и не больше двух, т.к. в каждой тройке векторы зависимы. Следовательно, размерности равны двум, и выкинуть нужно по одному — любому, лишь бы оставшиеся пары были независимы. А они все попарно независимы, потому и неважно, что выкидывать; так почему бы и не третьи?

В ответ был указан только вектор, который вы нашли. Других не вижу смысла искать.

Да, но обязательно нужно видеть, почему именно не видно смысла.

Профиль  

svv 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение31.05.2013, 17:51 

Заслуженный участник


23/07/08
10076
Crna Gora

Но вот хотелось бы узнать, почему вы выкинули именно векторы $a_3$ и $b_3$?

В дополнение к тому, что сказал ewert

. Мне хотелось, чтобы, с одной стороны, нумерация векторов в базисах соответствовала нумерации в исходных линейно зависимых системах, а с другой, чтобы она была без «дыр».

Скажем, если бы я выбросил из первой системы вектор $a_2$, а из второй вектор $b_1$, то неизвестные были бы $alpha_1, alpha_3, beta_2, beta_3$, как-то это несимпатично. А переименовывать их, чтобы убрать пропуски — значит запутать читателя.

Профиль  

Rebirther 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение31.05.2013, 18:19 


30/05/13
12

Спасибо. Теперь всё понятно. :-) Будем идти дальше по пути линейной алгебры.

Профиль  

bot 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение01.06.2013, 13:48 

Заслуженный участник
Аватара пользователя


21/12/05
5849
Новосибирск

Другой вариант. Если задан базис подпространства $a_1, ldots , a_s$, то система $(a_i, x)=0,  i=1,ldots, s$ задаёт ортогональное дополнение к этому подпространству. Фундаментальный набор решений даст базис этого ортогонального дополнения. По предыдущему получаем систему уравнений, задающую ортогональное дополнение к ортогональному дополнению, то есть исходное подпространство.
В результате хождений туда-сюда мы имеем способ перехода от одного задания подпространства (базисом или системой образующих) к другому — с помощью однородной системы линейных уравнений.
Теперь если даны два подпространства, то для описания их пересечения удобно их задать системами, а их пересечение будет описываться объединением систем.

Профиль  

ewert 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение03.06.2013, 11:19 

Заслуженный участник


11/05/08
32162

Теперь если даны два подпространства, то для описания их пересечения удобно их задать системами, а их пересечение будет описываться объединением систем.

Лучше сформулировать то же самое более абстрактно: ортогональное дополнение к пересечению есть сумма ортогональных дополнений. Тем самым исходная задача о поиске пересечения распадается на цепочку шаблонных.

Профиль  

dimka11 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение20.02.2018, 20:11 


16/01/18
4

Поясните, пожалуйста, как мы нашли, что

Цитата:

Решение: $alpha_1=2, alpha_2=1, beta_1=-1, beta_2=-1$, что дает вектор

Профиль  

iifat 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 01:01 

Заслуженный участник


16/02/13
3985
Владивосток

Обычным путём (стоило б дать цитату, по-моему, из Винни-Пуха, но, увы, память…)
Способов решения (в том числе, недоопределённых) систем линейных уравнений — их много. Хотя б метод Гаусса поищите.

Профиль  

dimka11 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 04:48 


16/01/18
4

Обычным путём (стоило б дать цитату, по-моему, из Винни-Пуха, но, увы, память…)
Способов решения (в том числе, недоопределённых) систем линейных уравнений — их много. Хотя б метод Гаусса поищите.

Получается нулевое и бесконечное количество решений, которое выражается, через свободную переменную, а как получить числовое?

Профиль  

iifat 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 07:09 

Заслуженный участник


16/02/13
3985
Владивосток

Дык для недоопределённой — никак же ж. Если хочется примеров — можно подставить вместо свободной переменной свободное число. Если у системы бесконечное количество решений, то так оно и есть.

Профиль  

dimka11 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 07:34 


16/01/18
4

Дык для недоопределённой — никак же ж. Если хочется примеров — можно подставить вместо свободной переменной свободное число. Если у системы бесконечное количество решений, то так оно и есть.

Как тогда решение системы, из примера получили?

Профиль  

Someone 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 10:42 

Заслуженный участник
Аватара пользователя


23/07/05
17973
Москва

Дык, а в чём проблема-то? Ежели у Вас есть общее решение системы, выраженное через какие-то параметры, то кто мешает получить из него миллион частных, подставляя вместо параметров какие-нибудь числа?

Профиль  

dimka11 

Re: Помогите найти базис пересечения линейных оболочек

Сообщение21.02.2018, 10:58 


16/01/18
4

Дык, а в чём проблема-то? Ежели у Вас есть общее решение системы, выраженное через какие-то параметры, то кто мешает получить из него миллион частных, подставляя вместо параметров какие-нибудь числа?

И все вектора решений, будут пересечением подпространств?

Профиль  

Модераторы: Модераторы Математики, Супермодераторы

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей

Вы не можете начинать темы
Вы не можете отвечать на сообщения
Вы не можете редактировать свои сообщения
Вы не можете удалять свои сообщения
Вы не можете добавлять вложения

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как составить заявление в ровд
  • Как составить акт приема передачи автомобиля по договору купли продажи
  • Яндекс работа как найти свою вакансию
  • Как найти высоты треугольника зная его стороны
  • Как найти среднюю точку входа

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии