Как найти абсолютное удлинение в физике

Абсолютное удлинение — показывает на сколько изменилась длина тела (увеличилась или уменьшилась).

Δl=l-l0

Единица измерения абсолютного удлинения метр — [м]

Деформация растяжения

Для того, чтобы было более понятно, что же такое абсолютное удлинение, давайте рассмотрим такой пример. У нас есть металлическая труба длиной 8 метров. К трубе приложили некую силу (сжали ее) и длина трубы стала 7 метров. Тогда абсолютное удлинение будет рассчитываться как: 8м-7м=1м. То есть, длина тела изменилась на 1 метр.

Обозначения:

Δl — абсолютное удлинение тела

l0 — начальная длина тела

l — конечная длина тела, после приложения к нему силы

Абсолютное удлинение — Показывает на сколько изменилась длина тела (увеличилась или уменьшилась).

LARGE Delta l=l-l_0   [Метр]


Абсолютное удлинение

Для того, чтобы было более понятно, что же такое абсолютное удлинение, давайте рассмотрим такой пример. У нас есть металлическая труба длиной 10 метров. К трубе приложили некую силу (сжали ее) и длина трубы стала 2 метра. Тогда абсолютное удлинение будет рассчитываться как:

large Delta l=10-2=8

То есть, длина тела изменилась на 8 метров.

В Формуле мы использовали :

Delta l — Абсолютное удлинение тела

l — Начальная длинна тела

l_0 — Длина тела, после приложения на него силы


Деформация
растяжения (сжатия). Линейная деформация
возникает при приложении силы вдоль
оси стержня, закрепленного с одного
конца (рис. 3, а, б). При линейных деформациях
слои тела остаются параллельными друг
другу, но изменяются расстояния между
ними. Линейную деформацию характеризуют
абсолютным и относительным удлинением.

Абсолютное
удлинение Δl = l — l0,
где l — длина деформированного тела, l0
— длина тела в недеформированном
состоянии.

Относительное
удлинение

— отношение абсолютного удлинения к
длине недеформированного тела.

На
практике растяжение испытывают тросы
подъемных кранов, канатных дорог,
буксирные тросы, струны музыкальных
инструментов. Сжатию подвергаются
колонны, стены и фундаменты зданий и
т.д.

Расчеты
прочности и жесткости конструкций и их
деталей невозможно осуществить, если
неизвестны механические свойства
реальных материалов и их числовые
характеристики, которые могут быть
определены только экспериментальным
путем.

Важность
экспериментальных исследований
объясняется еще и тем, что все решения
сопротивления материалов являются
приближенными. Поэтому их достоверность
и пределы применимости могут быть
установлены лишь экспериментально.
Механические свойства материалов при
различных видах деформаций (растяжении,
сжатии, кручении и т. д.) изучаются путем
испытания на специальных машинах брусьев
простейшей формы, называемых образцами.
Испытания проводятся обычно при комнатной
температуре. В последнее время большое
внимание уделяется исследованию свойств
материалов при повышенных температурах.
Наибольшей простотой и надежностью
результатов отличаются испытания на
растяжение. Испытательные машины
снабжены динамометрами для замеров
нагрузки на образец, а деформации
образцов измеряются специальными
приборами — тензометрами, устанавливаемыми
непосредственно на образцах.

В
процессе испытания изучается зависимость
между нагрузками и вызванными ими
удлинениями. Эту зависимость принято
представлять в виде диаграмм растяжения.
Как правило, испытательные машины
оборудованы специальными приспособлениями
для автоматической записи таких диаграмм.

При
построении диаграмм растяжения по оси
абсцисс откладываются удлинения Δl
рабочей части образца, а по оси ординат
— соответствующие им значения растягивающей
силы P

На
Рис.4.4 представлена диаграмма растяжения
образца из малоуглеродистой стали. Эту
диаграмму можно разделить на три
характерных участка.

Рис.
4.3. Образец для испытаний на растяжение

Рис.
4.4. Первичная диграмма растяжения
пластичного материала с площадкой
текучести

Рис.
4.5. Первичные диаграммы растяжения

На
участке ОА, соответствующем стадии
упругости образца, деформации материала
подчиняются закону Гука.

На
участке АВ рост нагрузки замедляется,
а затем почти прекращается при
одновременном росте удлинений. Явление
значительного роста удлинений без
заметного увеличения нагрузки называется
текучестью, а горизонтальный (или почти
горизонтальный) участок диаграммы
растяжения называется площадкой
текучести.

На
стадии общей текучести полированная
поверхность образца покрывается сеткой
тонких линий (см. Рис. 4.4), называемых
линиями сдвига, или линиями Чернова, по
фамилии русского металлурга, впервые
заметившего их. Эти линии являются
следами плоскостей скольжения (сдвига)
частиц материала друг относительно
друга. Они наклонены к оси бруса под
углом, близким к 45°, и практически
совпадают с плоскостями действия
максимальных касательных напряжений.

Многие
материалы, например легированные стали,
дюралюминий, обнаруживают пластические
свойства, но площадки текучести не
имеют. Характер диаграмм растяжения
для дюралюминия и легированной стали
представлен на Рис. 4.5.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Сила упругости — сила, которая возникает при деформациях тел в качестве ответной реакции на внешнее воздействие. Сила упругости имеет электромагнитную природу.

Деформация — изменение формы или объема тела.

Виды деформаций

  • сжатие;
  • растяжение;
  • изгиб (сжатие и растяжение в комбинации);
  • сдвиг;
  • кручение (частный случай сдвига).

Сила упругости обозначается как Fупр. Единица измерения — Ньютон (Н). Сила упругости направлена противоположно перемещению частиц при деформации.

Если после окончания действия внешних сил тело возвращает прежние форму и объем, то деформацию и само тело называю упругими. Если после окончания действия внешних сил тело остается деформированным, то деформацию и само тело называют пластическими, или неупругими.

Примеры упругой деформации:

  • Сжатый воздушный шарик распрямляется после того, как его отпустят.
  • Если согнуть ластик, а затем отпустить, он распрямится.
  • Мостик из доски, перекинутой через ручей, прогибается под пешеходом. Но когда пешеход ступает на землю, доска распрямляется.

Примеры пластической деформации:

  • Скомканная бумага остается скомканной и после того, как ее отпустили.
  • Пластилин сохраняет форму вылепленной из него фигуры.
  • Согнутая металлическая пластина остается согнутой.

Закон Гука

При упругой деформации есть взаимосвязь между силой упругости, возникающей в результате деформации, и удлинением деформируемого тела. Эту взаимосвязь первым обнаружил английский ученый Роберт Гук.

Закон Гука

Модуль силы упругости, возникающей при деформации тела, пропорционален его удлинению.

x — абсолютное удлинение (деформация), k — коэффициент жесткости тела.

Абсолютное удлинение определяется формулой:

l0 — начальная длина тела, l — длина деформированного тела, ∆l — изменение длины тела.

Коэффициент жесткости тела определяется формулой:

E — модуль упругости (модуль Юнга). Каждое вещество обладает своим модулем упругости. S — площадь сечения тела.

Важно! Закон Гука не работает в случае, если деформация была пластической.

Пример №1. Под действием силы 3Н пружина удлинилась на 4 см. Найти модуль силы, под действием которой удлинение пружины составит 6 см.

Согласно третьему закону Ньютона модуль силы упругости будет равен модулю приложенной к пружине силе. В обоих случаях постоянной величиной окажется только жесткость пружины. Выразим ее из закона Гука и применим к каждому из случаев:

Приравняем правые части формул:

Выразим и вычислим силу упругости, возникающую, когда удлинение пружины составит 6 см:

Полезные факты

Если пружину растягивают две противоположные силы, то модули силы упругости и модули этих сил равны между собой:

F1 = F2 = Fупр

Если груз подвешен к пружине, сила упругости будет равна силе тяжести, действующей на это тело:

Fупр = Fтяж = mg.

Если пружины соединены параллельно, их суммарный коэффициент жесткости будет равен сумме коэффициентов жесткости каждой из этих пружин:

Если пружины соединены последовательно, их обратное значение суммарного коэффициента жесткости будет равен сумме обратных коэффициентов жесткости для каждой из пружин:

Пример №2. Две пружины соединены параллельно. Жесткость одной из пружин равна 1000 Нм, второй — 4000 Нм. Когда к пружинам подвесили груз, они удлинились на 5 см. Найти силу тяжести груза.

Переведем сантиметры в метры: 5 см = 5∙10–2 м.

Запишем закон Гука с учетом параллельного соединения пружин:

Модуль силы тяжести согласно третьему закону Ньютона равен модулю силы упругости. Отсюда:

Задание E17590

На рисунке представлен график зависимости модуля силы упругости от удлинения пружины. Какова жёсткость пружины?

а) 250 Н/м

б) 160 Н/м

в) 2,5 Н/м

г) 1,6 Н/м


Алгоритм решения

2.Выразить из закона Гука формулу для вычисления коэффициента упругости.

3.Выбрать любую точку графика и извлечь из нее исходные данные.

4.Перевести единицы измерения в СИ.

5.Вычислить коэффициент упругости, используя извлеченные из графика данные.

Решение

Запишем закон Гука:

Fупр = kx

Отсюда коэффициент упругости пружины равен:

Возьмем на графике точку, соответствующую удлинению пружины 16 см. Ей соответствует модуль силы упругости, равный 40 Н. Переведем сантиметры в метры: 16 см = 0,16 м.

Вычислим жесткость пружины:

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18489

Кубик массой 1 кг покоится на гладком горизонтальном столе, сжатый с боков пружинами (см. рисунок). Первая пружина сжата на 4 см, а вторая сжата на 3 см. Жёсткость второй пружины k2 = 600 Н/м. Чему равна жёсткость первой пружины k1?


Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон Гука.
  3. Применить закон Гука к обеим пружинам.
  4. Применить третий закон Ньютона.
  5. Выразить жесткость первой пружины.
  6. Вычислить искомую величину.

Решение

Запишем исходные данные:

  • Сжатие первой пружины x1 — 4 см.
  • Сжатие второй пружины x2 — 3 см.
  • Жесткость второй пружины k2 — 600 Н/м.

Запишем закон Гука:

Fупр = kx

Применим этот закон к обеим пружинам:

Fупр1 = k1x1

Fупр2 = k2x2

Силы упругости обеих пружин уравновешены, так как тело между ними покоится. Согласно третьему закону Ньютона:

Fупр1 = Fупр2

Отсюда:

k1x1 = k2x2

Выразим отсюда жесткость первой пружины:

Подставим известные данные и вычислим:

Внимание! В данном случае переводить единицы измерения в СИ не нужно. Отношение длин постоянно независимо от выбранной единицы измерения.

Ответ: 450

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17520

Две упругие пружины растягиваются силами одной и той же величины F. Удлинение второй пружины Δl2 в 2 раза меньше, чем удлинение первой пружины Δl1. Жёсткость первой пружины равна k1, а жёсткость второй k2 равна…

а) 0,25k1

б) 2k1

в) 0,5k1

г) 4k1


Алгоритм решения

  1. Записать исходные данные.
  2. Записать закон Гука.
  3. Применить закон Гука к обеим пружинам.
  4. Выразить величину жесткости второй пружины.

Решение

Записываем исходные данные:

  • Первая и вторая пружины растягиваются под действием одной и той же силы. Поэтому: F1 = F2 = F.
  • Удлинение первой пружины равно: Δl1 = 2l.
  • Удлинение второй пружины вдвое меньше удлинения первой. Поэтому: Δl2 = l.

Закон Гука выглядит следующим образом:

F = k Δl

Применим закон Гука для обеих пружин:

F1 = k1 Δl1

F2 = k2 Δl2

Так как первая и вторая силы равны, можем приравнять правые части выражений. Получим:

k1 Δl1 = k2 Δl2

Перепишем выражение с учетом значения удлинений первой и второй пружин:

k1 2l = k2 l

«l» в левой и правой частях выражения взаимоуничтожаются, отсюда жесткость второй пружины равна:

k2 = 2k1

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 6.9k

Физика, 10 класс

Урок 9. Закон Гука

Перечень вопросов, рассматриваемых на этом уроке

1.Закона Гука.

2.Модели видов деформаций.

3. Вычисление и измерение силы упругости, жёсткости и удлинение пружины.

Глоссарий по теме

Сила упругости – это сила, возникающая в теле в результате его деформации и стремящаяся вернуть тело в исходное положение.

Деформация – изменение формы или размеров тела, происходящее из-за неодинакового смещения различных частей одного и того же тела в результате воздействия другого тела. Виды деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

Закон Гука – сила упругости, возникающая при деформации тела (растяжение или сжатие пружины), пропорциональна удлинению тела (пружины), и направлена в сторону противоположную направлению перемещений частиц тела

Основная и дополнительная литература по теме:

Г.Я. Мякишев., Б.Б.Буховцев., Н.Н.Сотский. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017стр. 107-112

Рымкевич А.П. Сборник задач по физике. 10-11класс.- М.:Дрофа,2009. Стр 28-29

ЕГЭ 2017. Физика. 1000 задач с ответами и решениями. Демидова М.Ю., Грибов В.А., Гиголо А.И. М.: Экзамен, 2017.

Основное содержание урока

В окружающем нас мире мы наблюдаем, как различные силы заставляют тела двигаться, делать прыжки, перемещаться, взаимодействовать.

Однако можно также наблюдать как происходят разрушения, так называемые деформации, различных сооружений: мостов, домов, разнообразных машин.

Что необходимо знать инженеру конструктору, строителю, чтобы строить надёжные сооружения: дома, мосты, машины?

Почему деформации различны, какие виды деформации могут быть у конкретных тел? Почему одни тела после деформации могут восстановиться, а другие нет? От чего зависит и можно ли рассчитать величину этих деформаций?

Деформация — это изменение формы или размеров тела, в результате воздействия на него другого тела.

Почему деформации не одинаковы у различных тел, если мы их, к примеру, сжимаем? Давайте вспомним что мы знаем о строении вещества.

Все вещества состоят из частиц. Между этими частицами существуют силы взаимодействия- эти силы электромагнитной природы. Эти силы в зависимости от расстояний между частицами проявляются, то как силы притяжения, то как силы отталкивания.

Сила упругости – сила, возникающая при деформации любых тел, а также при сжатии жидкостей и газов. Она противодействует изменению формы тел.

Мы можем наблюдать несколько видов деформаций: сжатие, растяжение, изгиб, сдвиг, кручение.

При деформации растяжения межмолекулярные расстояния увеличиваются. Такую деформацию испытывают струны в музыкальных инструментах, различные нити, тросы, буксирные тросы.

При деформации сжатия межмолекулярные расстояния уменьшаются. Под такой деформацией находятся стены, фундаменты сооружений и зданий.

При деформации изгиба происходят неординарные изменения, одни межмолекулярные слои увеличиваются, а другие уменьшаются. Такие деформации испытывают перекрытия в зданиях и мостах.

При кручении – происходят повороты одних молекулярных слоёв относительно других. Эту деформацию испытывают: валы, витки цилиндрических пружин, столярный бур, свёрла по металлу, валы при бурении нефтяных скважин. Деформация среза тоже является разновидностью деформации сдвига.

Первое научное исследование упругого растяжения и сжатия вещества провёл английский учёный Роберт Гук.

Роберт Гук установил, что при малых деформациях растяжения или сжатия тела абсолютное удлинение тела прямо пропорционально деформирующей силе.

F упр = k ·Δℓ = k · Iℓ−ℓ0I закон Гука.

k− коэффициент пропорциональности, жёсткость тела.

0 — начальная длина.

ℓ — конечная длина после деформации.

Δℓ = I ℓ−ℓ₀ I- абсолютное удлинение пружины.

— единица измерения жёсткости в системе СИ.

При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе, а слишком большие деформации разрушают тело.

Для расчёта движения тел под действием силы упругости, нужно учитывать направление этой силы. Если принять за начало отсчёта крайнюю точку недеформированного тела, то абсолютное удлинение тела можно характеризовать конечной координатой деформированного тела. При растяжении и сжатии сила упругости направлена противоположно смещению его конца.

Закон Гука можно записать для проекции силы упругости на выбранную координатную ось в виде:

F упр x = − kx — закона Гука.

k – коэффициент пропорциональности, жёсткость тела.

x = Δℓ = ℓ−ℓ0 удлинение тела (пружины, резины, шнура, нити….)

Fупр x = − kx

Закон Гука:

Fупр = k·Δℓ = k · Iℓ−ℓ0I

Графиком зависимости модуля силы упругости от абсолютного удлинения тела является прямая, угол наклона которой к оси абсцисс зависит от коэффициента жёсткости k. Если прямая идёт круче к оси силы упругости, то коэффициент жёсткости этого тела больше, если же уклон прямой идёт ближе к оси абсолютного удлинения, следует понимать, что жёсткость тела меньше.

График, зависимости проекции силы упругости на ось ОХ, того же тела от значения х.

Необходимо помнить, что закон Гука хорошо выполняется при только при малых деформациях. При больших деформациях изменение длины перестаёт быть прямо пропорциональным приложенной силе.

Разбор тренировочных заданий

1. По результатам исследования построен график зависимости модуля силы упругости пружины от её деформации. Чему равна жёсткость пружины? Каким будет удлинение этой пружины при подвешивании груза массой 2кг?

Решение: По графику идёт линейная зависимость модуля силы упругости и удлинение пружины. Зависимость физических величин по Закону Гука:

F упр x = − kx (1)

Fупр = k·Δℓ = k · Iℓ−ℓ0I (2)

Из формулы (1) выражаем:

Зная что Fт = mg = 20 Н, Fт = Fупр= k·Δℓ следовательно

Ответ: жёсткость пружины равна 200 Н/м, удлинение пружины равно 0,1м.

2. К системе из кубика массой 1 кг и двух пружин приложена постоянная горизонтальная сила. Система покоится. Между кубиком и опорой трения нет. Левый край первой пружины прикреплён к стенке. Удлинение первой пружины 0,05 м. Жёсткость первой пружины равна 200 Н/м. Удлинение второй пружины 0,25 м.

  1. Чему равна приложенная к системе сила?
  2. Чему равна жёсткость второй пружины?
  3. Во сколько раз жёсткость второй пружины меньше чем первой?

Решение:

1. По условию задачи система находится в покое. Зная жёсткость и удлинение пружины найдём силу, которая уравновешивает приложенную постоянную горизонтальную силу.

F = F упр = k1·Δℓ1 = 200 Н/м·0,05 м = 10 Н

2. Жёсткость второй пружины:

3. k1/ k2 = 200/40 = 5

Ответ: F=10 Н; k2 = 40 Н/м; k1/k2 = 5.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как в excel 2010 найти макросы
  • Failed to create decoder for mp3 css как исправить
  • Как в 1с исправить начисление амортизации в налоговом учете
  • Websocket is closed before the connection is established как исправить
  • Как в лесу найти пихту

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии