Содержание: [Скрыть]
-
- 1. Постановка задачи
- 2. Основные положения гидравлического расчета
- 3. Подбор оптимального диаметра трубопровода
- 4. Расчет падения напора и гидравлического сопротивления
- 5. Расчет потерь давления
- 6. Примеры задач гидравлического расчета трубопровода с решениями
Постановка задачи
Гидравлический расчёт при разработке проекта трубопровода направлен на определение диаметра трубы и падения напора потока носителя. Данный вид расчёта проводится с учетом характеристик конструкционного материала, используемого при изготовлении магистрали, вида и количества элементов, составляющих систему трубопроводов(прямые участки, соединения, переходы, отводы и т. д.), производительности,физических и химических свойств рабочей среды.
Многолетний практический опыт эксплуатации систем трубопроводов показал, что трубы, имеющие круглое сечение, обладают определенными преимуществами перед трубопроводами, имеющими поперечное сечение любой другой геометрической формы:
- минимальное соотношением периметра к площади сечения, т.е. при равной способности, обеспечивать расход носителя, затраты на изолирующие и защитные материалы при изготовлении труб с сечением в виде круга, будут минимальными;
- круглое поперечное сечение наиболее выгодно для перемещения жидкой или газовой среды сточки зрения гидродинамики, достигается минимальное трение носителя о стенки трубы;
- форма сечения в виде круга максимально устойчива к воздействию внешних и внутренних напряжений;
- процесс изготовления труб круглой формы относительно простой и доступный.
Подбор труб по диаметру и материалу проводится на основании заданных конструктивных требований к конкретному технологическому процессу. В настоящее время элементы трубопровода стандартизированы и унифицированы по диаметру. Определяющим параметром при выборе диаметра трубы является допустимое рабочее давление, при котором будет эксплуатироваться данный трубопровод.
Основными параметрами, характеризующими трубопровод являются:
- условный (номинальный) диаметр – DN;
- давление номинальное – PN;
- рабочее допустимое (избыточное) давление;
- материал трубопровода, линейное расширение, тепловое линейное расширение;
- физико-химические свойства рабочей среды;
- комплектация трубопроводной системы (отводы, соединения, элементы компенсации расширения и т.д.);
- изоляционные материалы трубопровода.
Условный диаметр (проход) трубопровода (DN) – это условная безразмерная величина, характеризующая проходную способность трубы, приблизительно равная ее внутреннему диаметру. Данный параметр учитывается при осуществлении подгонки сопутствующих изделий трубопровода (трубы, отводы, фитинги и др.).
Условный диаметр может иметь значения от 3 до 4000 и обозначается: DN 80.
Условный проход по числовому определению примерно соответствует реальному диаметру определенных отрезков трубопровода. Численно он выбран таким образом, что пропускная способность трубы повышается на 60-100% при переходе от предыдущего условного прохода к последующему.Номинальный диаметр выбирается по значению внутреннего диаметра трубопровода. Это то значение, которое наиболее близко к реальному диаметру непосредственно трубы.
Давление номинальное (PN) – это безразмерная величина, характеризующая максимальное давление рабочего носителя в трубе заданного диаметра, при котором осуществима длительная эксплуатация трубопровода при температуре 20°C.
Значения номинального давления были установлены на основании продолжительной практики и опыта эксплуатации: от 1 до 6300.
Номинальное давление для трубопровода с заданными характеристиками определяется по ближайшему к реально создаваемому в нем давлению. При этом,вся трубопроводная арматура для данной магистрали должна соответствовать тому же давлению. Расчет толщины стенок трубы проводится с учетом значения номинального давления.
Основные положения гидравлического расчета
Рабочий носитель (жидкость, газ, пар), переносимый проектируемым трубопроводом, в силу своих особых физико-химических свойств определяет характер течения среды в данном трубопроводе. Одним из основных показателей характеризующих рабочий носитель, является динамическая вязкость, характеризуемая коэффициентом динамической вязкости – μ.
Инженер-физик Осборн Рейнольдс (Ирландия), занимавшийся изучением течения различных сред, в 1880 году провел серию испытаний, по результату которых было выведено понятие критерия Рейнолдса (Re) – безразмерной величины, описывающей характер потока жидкости в трубе. Расчет данного критерия проводится по формуле:
Критерий Рейнольдса (Re) дает понятие о соотношении сил инерции к силам вязкого трения в потоке жидкости. Значение критерия характеризует изменение соотношения указанных сил, что, в свою очередь, влияет на характер потока носителя в трубопроводе. Принято выделять следующие режимы потока жидкого носителя в трубе в зависимости от значения данного критерия:
- ламинарный поток (Re<2300), при котором носитель-жидкость движется тонкими слоями, практически не смешивающимися друг с другом;
- переходный режим (2300<Re<4000), который характеризуется нестабильной структурой потока, когда отдельные слои жидкости перемешиваются;
- турбулентный поток (Re>4000) – устойчивый режим, при котором в каждой отдельной точке потока происходит изменение его направления и скорости, что в итоге приводит к выравниванию скорости движения потока по объему трубы.
Критерий Рейнольдса зависит от напора, с которым насос перекачивает жидкость, вязкости носителя при рабочей температуре и геометрических размеров используемой трубы (d, длина). Данный критерий является параметром подобия для течения жидкости,поэтому, используя его, можно осуществлять моделирование реального технологического процесса в уменьшенном масштабе, что удобно при проведении испытаний и экспериментов.
Проводя расчеты и вычисления по уравнениям, часть заданных неизвестных величин можно взять из специальных справочных источников. Профессор, доктор технических наук Ф. А. Шевелев разработал ряд таблиц для проведения точного расчета пропускной способности трубы. Таблицы включают значения параметров, характеризующих как сам трубопровод (размеры, материалы), так и их взаимосвязь с физико-химическими свойствами носителя. Кроме того, в литературе приводится таблица приближенных значений скоростей движения потока жидкости, пара,газа в трубе различного сечения.
Подбор оптимального диаметра трубопровода
Определение оптимального диаметра трубопровода – это сложная производственная задача, решение которой зависит от совокупности различных взаимосвязанных условий (технико-экономические, характеристики рабочей среды и материала трубопровода, технологические параметры и т.д.). Например, повышение скорости перекачиваемого потока приводит к уменьшению диаметра трубы, обеспечивающей заданный условиями процесса расход носителя, что влечет за собой снижение затрат на материалы, удешевлению монтажа и ремонта магистрали и т.д. С другой стороны, повышение скорости потока приводит к потере напора, что требует дополнительных энергетических и финансовых затрат на перекачку заданного объема носителя.
Значение оптимального диаметра трубопровода рассчитывается по преобразованному уравнению неразрывности потока с учетом заданного расхода носителя:
При гидравлическом расчете расход перекачиваемой жидкости чаще всего задан условиями задачи. Значение скорости потока перекачиваемого носителя определяется, исходя из свойств заданной среды и соответствующих справочных данных (см. таблицу).
Преобразованное уравнение неразрывности потока для расчета рабочего диаметра трубы имеет вид:
Расчет падения напора и гидравлического сопротивления
Полные потери напора жидкости включают в себя потери на преодоление потоком всех препятствий: наличие насосов, дюкеров, вентилей, колен, отводов, перепадов уровня при течении потока по трубопроводу, расположенному под углом и т.д. Учитываются потери на местные сопротивления, обусловленные свойствами используемых материалов.
Другим важным фактором, влияющим на потери напора, является трение движущегося потока о стенки трубопровода, которое характеризуется коэффициентом гидравлического сопротивления.
Значение коэффициента гидравлического сопротивления λзависит от режима движения потока и шероховатости материала стенок трубопровода. Под шероховатостью понимают дефекты и неровности внутренней поверхности трубы. Она может быть абсолютной и относительной. Шероховатость различна по форме и неравномерна по площади поверхности трубы. Поэтому в расчетах используется понятие усредненной шероховатости с поправочным коэффициентом (k1). Данная характеристика для конкретного трубопровода зависит от материала, продолжительности его эксплуатации, наличия различных коррозионных дефектов и других причин. Рассмотренные выше величины являются справочными.
Количественная связь между коэффициентом трения, числом Рейнольдса и шероховатостью определяется диаграммой Муди.
Для вычисления коэффициента трения турбулентного движения потока также используется уравнение Коулбрука-Уайта, с использованием которого возможно наглядное построение графических зависимостей, по которым определяется коэффициент трения:
В расчётах используются и другие уравнения приблизительного расчета потерь напора на трение. Одним из наиболее удобных и часто используемых в этом случае считается формула Дарси-Вейсбаха. Потери напора на трение рассматриваются как функция скорости жидкости от сопротивления трубы движению жидкости, выражаемой через значение шероховатости поверхности стенок трубы:
Потери давления по причине трения для воды рассчитывают по формуле Хазена — Вильямса:
Расчет потерь давления
Рабочее давление в трубопроводе – это на большее избыточное давление, при котором обеспечивается заданный режим технологического процесса. Минимальное и максимальное значения давления, а также физико-химические свойства рабочей среды, являются определяющими параметрами при расчёте расстояния между насосами, перекачивающими носитель, и производственной мощности.
Расчет потерь на падение давления в трубопроводе осуществляют по уравнению:
Примеры задач гидравлического расчета трубопровода с решениями
Задача 1
В аппарат с давлением 2,2 бар по горизонтальному трубопроводу с эффективным диаметром 24 мм из открытого хранилища насосом перекачивается вода. Расстояние до аппарата составляет 32 м. Расход жидкости задан – 80 м3/час. Суммарный напор составляет 20 м. Принятый коэффициент трения равен 0,028.
Рассчитайте потери напора жидкости на местные сопротивления в данном трубопроводе.
Исходные данные:
Расход Q = 80 м3/час = 80·1/3600 = 0,022 м3/с;
эффективный диаметр d = 24 мм;
длина трубы l = 32 м;
коэффициент трения λ = 0,028;
давление в аппарате Р = 2,2 бар = 2,2·105 Па;
общий напор Н = 20 м.
Решение задачи:
Скорость потока движения воды в трубопроводе рассчитывается по видоизмененному уравнению:
w=(4·Q) / (π·d2) = ((4·0,022) / (3,14·[0,024]2)) = 48,66 м/с
Потери напора жидкости в трубопроводе на трение определяются по уравнению:
HТ = (λ·l) / (d·[w2/(2·g)]) = (0,028·32) / (0,024·[48,66]2) / (2·9,81) = 0,31 м
Общие потери напора носителя рассчитываются по уравнению и составляют:
hп = H — [(p2-p1)/(ρ·g)] — Hг = 20 — [(2,2-1)·105)/(1000·9,81)] — 0 = 7,76 м
Потери напора на местные сопротивления определяется как разность:
7,76 — 0,31=7,45 м
Ответ: потери напора воды на местные сопротивления составляют 7,45 м.
Задача 2
По горизонтальному трубопроводу центробежным насосом транспортируется вода. Поток в трубе движется со скоростью 2,0 м/с. Общий напор составляет 8 м.
Найти минимальную длину прямого трубопровода, в центре которого установлен один вентиль. Забор воды осуществляется из открытого хранилища. Из трубы вода самотеком изливается в другую емкость. Рабочий диаметр трубопровода равен 0,1 м. Относительная шероховатость принимается равной 4·10-5.
Исходные данные:
Скорость потока жидкости W = 2,0 м/с;
диаметр трубы d = 100 мм;
общий напор Н = 8 м;
относительная шероховатость 4·10-5.
Решение задачи:
Согласно справочным данным в трубе диаметром 0,1 м коэффициенты местных сопротивлений для вентиля и выхода из трубы составляют соответственно 4,1 и 1.
Значение скоростного напора определяется по соотношению:
w2/(2·g) = 2,02/(2·9,81) = 0,204 м
Потери напора воды на местные сопротивления составят:
∑ζМС·[w2/(2·g)] = (4,1+1)·0,204 = 1,04 м
Суммарные потери напора носителя на сопротивление трению и местные сопротивления рассчитываются по уравнению общего напора для насоса (геометрическая высота Hг по условиям задачи равна 0):
hп = H — (p2-p1)/(ρ·g) — = 8 — ((1-1)·105)/(1000·9,81) — 0 = 8 м
Полученное значение потери напора носителя на трение составят:
8-1,04 = 6,96 м
Рассчитаем значение числа Рейнольдса для заданных условий течения потока (динамическая вязкость воды принимается равной 1·10-3 Па·с, плотность воды – 1000 кг/м3):
Re = (w·d·ρ)/μ = (2,0·0,1·1000)/(1·10-3) = 200000
Согласно рассчитанному значению Re, причем 2320 <Re< 10/e, по справочной таблице рассчитаем коэффициент трения (для режима гладкого течения):
λ = 0,316/Re0,25 = 0,316/2000000,25 = 0,015
Преобразуем уравнение и найдем требуемую длину трубопровода из расчетной формулы потерь напора на трение:
l = (Hоб·d) / (λ·[w2/(2g)]) = (6,96·0,1) / (0,016·0,204) = 213,235 м
Ответ:требуемая длина трубопровода составит 213,235 м.
Задача 3
В производстве транспортируют воду при рабочей температуре 40°С с производственным расходом Q = 18 м3/час. Длина прямого трубопровода l = 26 м, материал — сталь. Абсолютная шероховатость (ε) принимается для стали по справочным источникам и составляет 50 мкм. Какой будет диаметр стальной трубы, если перепад давления на данном участке не превысит Δp = 0,01 мПа (ΔH = 1,2 м по воде)? Коэффициент трения принимается равным 0,026.
Исходные данные:
Расход Q = 18 м3/час = 0,005 м3/с;
длина трубопровода l=26 м;
для воды ρ = 1000 кг/м3, μ = 653,3·10-6 Па·с (при Т = 40°С);
шероховатость стальной трубыε = 50 мкм;
коэффициент трения λ = 0,026;
Δp=0,01 МПа;
ΔH=1,2 м.
Решение задачи:
Используя форму уравнения неразрывности W=Q/F и уравнение площади потока F=(π·d²)/4 преобразуем выражение Дарси – Вейсбаха:
∆H = λ·l/d·W²/(2·g) = λ·l/d·Q²/(2·g·F²) = λ·[(l·Q²)/(2·d·g·[(π·d²)/4]²)] = =(8·l·Q²)/(g·π²)·λ/d5 = (8·26·0.005²)/(9,81·3,14²)· λ/d5 = 5,376·10-5·λ/d5
Выразим диаметр:
d5 = (5,376·10-5·λ)/∆H = (5,376·10-5·0,026)/1,2 = 1,16·10-6
d = 5√1,16·10-6 = 0,065 м.
Ответ: оптимальный диаметр трубопровода составляет 0,065 м.
Задача 4
Проектируются два трубопровода для транспортировки невязкой жидкости с предполагаемой производительностью Q1 = 18 м3/час и Q2 = 34 м3/час. Трубы для обоих трубопроводов должны быть одного диаметра.
Определите эффективный диаметр труб d, подходящих под условия данной задачи.
Исходные данные:
Q1 = 18 м3/час;
Q2 = 34 м3/час.
Решение задачи:
Определим возможный интервал оптимальных диаметров для проектируемых трубопроводов, воспользовавшись преобразованным видом уравнения расхода:
d = √(4·Q)/(π·W)
Значения оптимальной скорости потока найдем из справочных табличных данных. Для невязкой жидкости скорости потока составят 1,5 – 3,0 м/с.
Для первого трубопровода с расходом Q1 = 18 м3/час возможные диаметры составят:
d1min = √(4·18)/(3600·3,14·1,5) = 0,065 м
d1max = √(4·18)/(3600·3,14·3.0) = 0,046 м
Для трубопровода с расходом 18 м3/час подходят трубы с диаметром поперечного сечения от 0,046 до 0,065 м.
Аналогично определим возможные значения оптимального диаметра для второго трубопровода с расходом Q2 = 34 м3/час:
d2min = √(4·34)/(3600·3,14·1,5) = 0,090 м
d2max = √(4·34)/(3600·3,14·3) = 0,063 м
Для трубопровода с расходом 34 м3/час возможные оптимальные диаметром могут быть от 0,063 до 0,090 м.
Пересечение двух диапазонов оптимальных диаметров находится в интервале от 0,063 м до 0,065 м.
Ответ: для двух трубопроводов подходят трубы диаметром 0,063–0,065 м.
Задача 5
В трубопроводе диаметром 0,15 м при температуре Т = 40°C движется поток воды производительностью 100 м3/час. Определите режим течения потока воды в трубе.
Дано:
диаметр трубы d = 0,25 м;
расход Q = 100 м3/час;
μ = 653,3·10-6 Па·с (по таблице при Т = 40°С);
ρ = 992,2 кг/м3 (по таблице при Т = 40°С).
Решение задачи:
Режим течения потока носителя определяется по значению числа Рейнольдса (Re). Для расчета Re определим скорость движения потока жидкости в трубе (W), используя уравнение расхода:
W = Q·4/(π·d²) = [100/3600] · [4/(3,14·0,25²)] = 0,57 м/c
Значение числа Рейнольдса определим по формуле:
Re = (ρ·W·d)/μ = (992,2·0,57·0,25) / (653,3·10-6) = 216422
Критическое значение критерия Reкр по справочным данным равно 4000. Полученное значение Re больше указанного критического, что говорит о турбулентном характере течения жидкости при заданных условиях.
Ответ: режим потока воды – турбулентный.
From Wikipedia, the free encyclopedia
Available difference in hydraulic head across a hydroelectric dam, before head losses due to turbines, wall friction and turbulence
Fluid flows from the tank at the top to the basin at the bottom under the pressure of the hydraulic head.
Measuring hydraulic head in an artesian aquifer, where the water level is above the ground surface
Hydraulic head or piezometric head is a specific measurement of liquid pressure above a vertical datum.[1][2]
It is usually measured as a liquid surface elevation, expressed in units of length, at the entrance (or bottom) of a piezometer. In an aquifer, it can be calculated from the depth to water in a piezometric well (a specialized water well), and given information of the piezometer’s elevation and screen depth. Hydraulic head can similarly be measured in a column of water using a standpipe piezometer by measuring the height of the water surface in the tube relative to a common datum. The hydraulic head can be used to determine a hydraulic gradient between two or more points.
«Head» in fluid dynamics[edit]
In fluid dynamics, head is a concept that relates the energy in an incompressible fluid to the height of an equivalent static column of that fluid. From Bernoulli’s principle, the total energy at a given point in a fluid is the energy associated with the movement of the fluid, plus energy from static pressure in the fluid, plus energy from the height of the fluid relative to an arbitrary datum. Head is expressed in units of distance such as meters or feet. The force per unit volume on a fluid in a gravitational field is equal to ρg where ρ is the density of the fluid, and g is the gravitational acceleration. On Earth, additional height of fresh water adds a static pressure of about 9.8 kPa per meter (0.098 bar/m) or 0.433 psi per foot of water column height.
The static head of a pump is the maximum height (pressure) it can deliver. The capability of the pump at a certain RPM can be read from its Q-H curve (flow vs. height).
A common misconception is that the head equals the fluid’s energy per unit weight, while, in fact, the term with pressure does not represent any type of energy (in the Bernoulli equation for an incompressible fluid this term represents work of pressure forces). Head is useful in specifying centrifugal pumps because their pumping characteristics tend to be independent of the fluid’s density.
There are generally four types of head:
- Velocity head is due to the bulk motion of a fluid (kinetic energy).
Note that
is equal to the dynamic pressure for irrotational flow.
- Elevation head is due to the fluid’s weight, the gravitational force acting on a column of fluid. The elevation head is simply the elevation (h) of the fluid above an arbitrarily designated zero point:
- Pressure head is due to the static pressure, the internal molecular motion of a fluid that exerts a force on its container. It is equal to the pressure divided by the force/volume of the fluid in a gravitational field:
- Resistance head (or friction head or Head Loss) is due to the frictional forces acting against a fluid’s motion by the container. For a continuous medium, this is described by Darcy’s law which relates volume flow rate (q) to the gradient of the hydraulic head through the hydraulic conductivity K:
while in a piped system head losses are described by the Hagen–Poiseuille equation and the Bernoulli Equation.
Components of hydraulic head[edit]
After free falling through a height in a vacuum from an initial velocity of 0, a mass will have reached a speed
where is the acceleration due to gravity. Rearranged as a head:
The term is called the velocity head, expressed as a length measurement. In a flowing fluid, it represents the energy of the fluid due to its bulk motion.
The total hydraulic head of a fluid is composed of pressure head and elevation head.[1][2] The pressure head is the equivalent gauge pressure of a column of water at the base of the piezometer, and the elevation head is the relative potential energy in terms of an elevation. The head equation, a simplified form of the Bernoulli principle for incompressible fluids, can be expressed as:
where
In an example with a 400 m deep piezometer, with an elevation of 1000 m, and a depth to water of 100 m: z = 600 m, ψ = 300 m, and h = 900 m.
The pressure head can be expressed as:
where
is the gauge pressure (Force per unit area, often Pa or psi),
Fresh water head[edit]
The pressure head is dependent on the density of water, which can vary depending on both the temperature and chemical composition (salinity, in particular). This means that the hydraulic head calculation is dependent on the density of the water within the piezometer. If one or more hydraulic head measurements are to be compared, they need to be standardized, usually to their fresh water head, which can be calculated as:
where
Hydraulic gradient[edit]
The hydraulic gradient is a vector gradient between two or more hydraulic head measurements over the length of the flow path. For groundwater, it is also called the Darcy slope, since it determines the quantity of a Darcy flux or discharge. It also has applications in open-channel flow where it is also known as stream gradient and can be used to determine whether a reach is gaining or losing energy. A dimensionless hydraulic gradient can be calculated between two points with known head values as:
where
The hydraulic gradient can be expressed in vector notation, using the del operator. This requires a hydraulic head field, which can be practically obtained only from numerical models, such as MODFLOW for groundwater or standard step or HEC-RAS for open channels. In Cartesian coordinates, this can be expressed as:
This vector describes the direction of the groundwater flow, where negative values indicate flow along the dimension, and zero indicates ‘no flow’. As with any other example in physics, energy must flow from high to low, which is why the flow is in the negative gradient. This vector can be used in conjunction with Darcy’s law and a tensor of hydraulic conductivity to determine the flux of water in three dimensions.
Hydraulic head in groundwater[edit]
The distribution of hydraulic head through an aquifer determines where groundwater will flow. In a hydrostatic example (first figure), where the hydraulic head is constant, there is no flow. However, if there is a difference in hydraulic head from the top to bottom due to draining from the bottom (second figure), the water will flow downward, due to the difference in head, also called the hydraulic gradient.
Atmospheric pressure[edit]
Even though it is convention to use gauge pressure in the calculation of hydraulic head, it is more correct to use total pressure (gauge pressure + atmospheric pressure), since this is truly what drives groundwater flow. Often detailed observations of barometric pressure are not available at each well through time, so this is often disregarded (contributing to large errors at locations where hydraulic gradients are low or the angle between wells is acute.)
The effects of changes in atmospheric pressure upon water levels observed in wells has been known for many years. The effect is a direct one, an increase in atmospheric pressure is an increase in load on the water in the aquifer, which increases the depth to water (lowers the water level elevation). Pascal first qualitatively observed these effects in the 17th century, and they were more rigorously described by the soil physicist Edgar Buckingham (working for the United States Department of Agriculture (USDA)) using air flow models in 1907.
Head loss[edit]
In any real moving fluid, energy is dissipated due to friction; turbulence dissipates even more energy for high Reynolds number flows. This dissipation, called head loss, is divided into two main categories, «major losses» associated with energy loss per length of pipe, and «minor losses» associated with bends, fittings, valves, etc. The most common equation used to calculate major head losses is the Darcy–Weisbach equation. Older, more empirical approaches are the Hazen–Williams equation and the Prony equation.
For relatively short pipe systems, with a relatively large number of bends and fittings, minor losses can easily exceed major losses. In design, minor losses are usually estimated from tables using coefficients or a simpler and less accurate reduction of minor losses to equivalent length of pipe, a method often used for shortcut calculations of pneumatic conveying lines pressure drop.[3]
See also[edit]
- Borda–Carnot equation
- Dynamic pressure
- Minor losses in pipe flow
- Total dynamic head
- Stage (hydrology)
- Head (hydrology)
Notes[edit]
- ^ a b Mulley, Raymond (2004), Flow of Industrial Fluids: Theory and Equations, CRC Press, ISBN 978-0849327674, 410 pages. See pp. 43–44.
- ^ a b Chanson, Hubert (2004), Hydraulics of Open Channel Flow: An Introduction, Butterworth–Heinemann, ISBN 978-0750659789, 650 pages. See p. 22.
- ^ «Pipe equivalent length (Pneumatic conveying)».
References[edit]
- Bear, J. 1972. Dynamics of Fluids in Porous Media, Dover. ISBN 0-486-65675-6.
- for other references which discuss hydraulic head in the context of hydrogeology, see that page’s further reading section
Понятие о напоре
Под напором в
гидравлике понимается полная удельная
энергия движущейся жидкости.
Первые
два члена характеризуют удельную
потенциальную энергию. Их называют
потенциальным
напором
Последний
член характеризует удельную кинетическую
энергию. Его называют скоростным
напором.
Геометрическая
интерпретация уравнения Бернулли
При установившемся
движении жидкости сумма четырех высот
(высоты положения, пьезометрической
высоты, высоты, соответствующей
скоростному напору и высоты, соответствующей
потерям напора) остается неизменной
вдоль потока.
Линию,
соединяющая уровни жидкости в пьезометрах,
называют пьезометрической
или
линией
удельной потенциальной энергии.
Уклон
данной линии называют пьезометрическим
уклоном
,
— изменение
удельной потенциальной энергии на длине
участка l
Линию, соединяющая
уровни жидкости в трубках Пито, называют
напорной
или линией
полной удельной энергии.
Уклон данной
линии называют гидравлическим
уклоном.
— изменение полной
удельной энергии на длине участка l
-
Примеры
использования. ( Трубка Пито, водомер
Вентури, водоструйный насос.)
Ответ
Скоростная
трубка или трубка Пито
Прибор для измерения
скорости в точках потока.
Запишем уравнение
Бернулли для сечений струйки 1 – 1 и 2 –
2.
Конкретизируем
его для данного случая:
Допустим
,
,
,
,
,
Практическое
применение уравнения Д. Бернулли
При применении
уравнения Д. Бернулли для решения
практических задач гидравлики следует
помнить два основных условия:
1. Уравнение
Бернулли может быть применено только
для тех живых сечений потока, в которых
соблюдаются условия плавно изменяющегося
движения. На участках между выбранными
сечениями условия плавно изменяющегося
движения могут и не соблюдаться;
2.
Гидродинамическое давление и,
следовательно, высоту положения z
можно
относить к любой точке живого сечения,
так как для любой точки живого сечения
потока при плавно изменяющемся
движении их сумма есть величина
постоянная. Обычно двучлен
удобно
отнести для упрощения решения задач к
точкам или на свободной поверхности,
или на оси потока.
Расходомер Вентури
—представляет собой вставку в основную
трубу диаметромD
трубы
меньшего диаметра d,
которая
соединена с основной трубой коническими
переходами.
В
основной трубе сечение 1-1
и
в суженном сечении 2-2
присоединены пьезометры, по показаниям
которых можно определить расход жидкости
в трубе Q.
Выведем
общую формулу водомера для определения
расхода в трубе. Составим уравнение
Бернулли для точек, расположенных в
центре тяжести сечений 1-1
перед
сужением и 2-2
в
горловине, приняв плоскость сравнения
по оси трубы о-о.
Для
наших условий
,
Потери
напора в сужении ввиду малости
расстояния между сечениями считаем
равными нулю.
Тогда уравнение
Бернулли запишется так
,
,
,
В уравнении две
неизвестные величины. Составим
второе уравнение, используя уравнение
неразрывности
Подставляя в
уравнение, получим
При выводе этой
формулы не учитывались потери напора
в водомере, которые в действительности
будут. С учетом потерь напора формула
расхода водомера Вентури запишется
так:
где m
– коэффициент
расхода водомера, учитывающий
потери напора в водомере. Для новых
водомеров; m
=0,985 для водомеров, бывших в употреблении
m
=0,98.
Соседние файлы в папке НТС_3з_2016
- #
- #
- #
5 ГИДРАВЛИЧЕСКИЙ РАСЧЕТ ТРУБОПРОВОДОВ
5.1 Простой трубопровод постоянного сечения
Трубопровод называется простым, если он не имеет ответвлений. Простые трубопроводы могут образовывать соединения: последовательное, параллельное или разветвленное. Трубопроводы могут быть сложными, содержащими как последовательное, так и параллельное соединения или разветвления.
Жидкость движется по трубопроводу благодаря тому, что ее энергия в начале трубопровода больше, чем в конце. Этот перепад (разность) уровней энергии может быть создан тем или иным способом: работой насоса, благодаря разности уровней жидкости, давлением газа. В машиностроении приходится иметь дело главным образом с трубопроводами, движение жидкости в которых обусловлено работой насоса.
При гидравлическом расчете трубопровода чаще всего определяется его потребный напор Hпотр — величина, численно равная пьезометрической высоте в начальном сечении трубопровода. Если потребный напор задан, то его принято называть располагаемым напором Hрасп. В этом случае при гидравлическом расчете может определяться расход Q жидкости в трубопроводе или его диаметр d. Значение диаметра трубопровода выбирается из установленного ряда в соответствии с ГОСТ 16516—80.
Пусть простой трубопровод постоянного проходного сечения, произвольно расположенный в пространстве (рисунок 5.1, а), имеет общую длину l и диаметр d и содержит ряд местных гидравлических сопротивлений I и II.
Запишем уравнение Бернулли для начального 1-1 и конечного 2-2 сечений этого трубопровода, считая, что коэффициенты Кориолиса в этих сечениях одинаковы (α1=α2). После сокращения скоростных напоров получим
,
Рекомендуемые материалы
где z1, z2 — координаты центров тяжести соответственно начального и конечного сечений;
p1, p2 — давления в соответственно начальном и конечном сечениях трубопровода;
— суммарные потери напора в трубопроводе.
Отсюда потребный напор
, (5.1)
Как видно из полученной формулы, потребный напор складывается из суммарной геометрической высоты Δz = z2 – z1, на которую поднимается жидкость в процессе движения по трубопроводу, пьезометрической высоты в конечном сечении трубопровода и суммы гидравлических потерь напора, возникающих при движении жидкости в нем.
В гидравлике принято под статическим напором трубопровода понимать сумму .
Рисунок 5.1 – Простой трубопровод:
а – расчетная схема; б – характеристики потребного напора при ламинарном режиме течения;
в – то же при турбулентном режиме
Тогда, представляя суммарные потери как степенную функцию от расхода Q, получим
, (5.2)
где т — величина, зависящая от режима течения жидкости в трубопроводе;
К — сопротивление трубопровода.
При ламинарном режиме течения жидкости и линейных местных сопротивлениях (заданы их эквивалентные длины lэкв) суммарные потери
,
где lрасч = l + lэкв — расчетная длина трубопровода.
Следовательно, при ламинарном режиме т = 1, .
При турбулентном течении жидкости
.
Заменяя в этой формуле среднюю скорость жидкости через расход, получим суммарные потери напора
. (5.3)
Тогда при турбулентном режиме , а показатель степени m = 2. При этом следует помнить, что в общем случае коэффициент потерь на трение по длине
является также функцией расхода Q.
Поступая аналогично в каждом конкретном случае, после несложных алгебраических преобразований и вычислений можно получить формулу, определяющую аналитическую зависимость потребного напора для данного простого трубопровода от расхода в нем. Примеры таких зависимостей в графическом виде приведены на рисунке 5.1, б, в.
Анализ формул, приведенных выше, показывает, что решение задачи по определению потребного напора Hпотр при известных расходе Q жидкости в трубопроводе и его диаметре d несложно, так как всегда можно провести оценку режима течения жидкости в трубопроводе, сравнивая критическое значение Reкp = 2300 с его фактическим значением, которое для труб круглого сечения может быть вычислено по формуле
. (5.4)
После определения режима течения можно вычислить потери напора, а затем потребный напор по формуле (5.2).
Если же величины Q или d неизвестны, то в большинстве случаев сложно оценить режим течения, а, следовательно, обоснованно выбрать формулы, определяющие потери напора в трубопроводе. В такой ситуации можно рекомендовать использовать либо метод последовательного приближения, обычно требующий достаточно большого объема вычислительной работы, либо графический метод, при применении которого необходимо строить так называемую характеристику потребного напора трубопровода.
5.2. Построение характеристики потребного напора простого трубопровода
Графическое представление в координатах Н—Q аналитической зависимости (5.2), полученной для данного трубопровода, в гидравлике называется характеристикой потребного напора. На рисунке 5.1, б, в приведено несколько возможных характеристик потребного напора (линейные — при ламинарном режиме течения и линейных местных сопротивлениях; криволинейные — при турбулентном режиме течения или наличии в трубопроводе квадратичных местных сопротивлений).
Как видно на графиках, значение статического напора Нст может быть как положительным (жидкость подается на некоторую высоту Δz или в конечном сечении существует избыточное давление p2), так и отрицательным (при течении жидкости вниз или при ее движении в полость с разрежением).
Крутизна характеристик потребного напора зависит от сопротивления трубопровода и возрастает с увеличением длины трубы и уменьшением ее диаметра, а также зависит от количества и характеристик местных гидравлических сопротивлений. Кроме того, при ламинарном режиме течения рассматриваемая величина пропорциональна еще и вязкости жидкости. Точка пересечения характеристики потребного напора с осью абсцисс (точка А на рисунке 5.1, б, в) определяет расход жидкости в трубопроводе при движении самотеком.
Графические зависимости потребного напора широко используются для определения расхода Q при расчете как простых трубопроводов, так и сложных. Поэтому рассмотрим методику построения такой зависимости (рисунок 5.2, а). Она состоит из следующих этапов.
1-й этап. Используя формулу (5.4) определяем значение критического расхода Qкр, соответствующее Reкp=2300, и отмечаем его на оси расходов (ось абсцисс). Очевидно, что для всех расходов, расположенных левее Qкр, в трубопроводе будет ламинарный режим течения, а для расходов, расположенных правее Qкр, — турбулентный.
2-й этап. Рассчитываем значения потребного напора Н1 и Н2 при расходе в трубопроводе, равном Qкр, соответственно предполагая, что Н1 — результат расчета при ламинарном режиме течения, а Н2 — при турбулентном.
3-й этап. Строим характеристику потребного напора для ламинарного режима течения (для расходов, меньших Qкр). Если местные сопротивления, установленные в трубопроводе, имеют линейную зависимость потерь от расхода, то характеристика потребного напора имеет линейный вид.
4-й этап. Строим характеристику потребного напора для турбулентного режима течения (для расходов, больших Qкp). Во всех случаях получается криволинейная характеристика, близкая к параболе второй степени.
Имея характеристику потребного напора для данного трубопровода, можно по известному значению располагаемого напора Hрасп найти искомое значение расхода Qx (см. рисунок 5.2, а).
Если же необходимо найти внутренний диаметр трубопровода d, то, задаваясь несколькими значениями d, следует построить зависимость потребного напора Hпотр от диаметра d (рис. 5.2, б). Далее по значению Нрасп выбирается ближайший больший диаметр из стандартного ряда dст.
В ряде случаев на практике при расчете гидросистем вместо характеристики потребного напора используют характеристику трубопровода. Характеристика трубопровода — это зависимость суммарных потерь напора в трубопроводе от расхода. Аналитическое выражение этой зависимости имеет вид
. (5.5)
Сравнение формул (5.5) и (5.2) позволяет заключить, что характеристика трубопровода отличается от характеристики потребного напора отсутствием статического напора Hст, а при Hст = 0 эти две зависимости совпадают.
5.3 Соединения простых трубопроводов.
Аналитические и графические способы расчета
Рассмотрим способы расчета соединений простых трубопроводов.
Пусть имеем последовательное соединение нескольких простых трубопроводов (1, 2 и 3 на рисунке 5.3, а) различной длины, разного диаметра, с различным набором местных сопротивлений. Так как эти трубопроводы включены последовательно, то в каждом из них имеет место один и тот же расход жидкости Q. Суммарная потеря напора для всего соединения (между точками М и N) складывается из потерь напора в каждом простом трубопроводе (
,
,
), т.е. для последовательного соединения справедлива следующая система уравнений:
(5.6)
Рисунок 5.3 — Схема последовательного (а), параллельного (в) и сложного (д) соединений трубопроводов и соответствующие им характеристики (б, г, е):
1,2,3 — трубопроводы
Потери напора в каждом простом трубопроводе могут быть определены через значения соответствующих расходов:
;
;
. (5.7)
Система уравнений (5.6), дополненная зависимостями (5.7), является основой для аналитического расчета гидросистемы с последовательным соединением трубопроводов.
Если используется графический метод расчета, то при этом возникает необходимость в построении суммарной характеристики соединения.
На рисунке 5.3, б показан способ получения суммарной характеристики последовательного соединения. Для этого используются характеристики простых трубопроводов 1, 2 и 3, которые строятся по зависимостям (5.7).
Для построения точки, принадлежащей суммарной характеристике последовательного соединения, необходимо в соответствии с (5.6) сложить потери напора в исходных трубопроводах при одинаковом расходе. С этой целью на графике проводят произвольную вертикальную линию (при произвольном расходе Q‘). По этой вертикали суммируют отрезки (потери напора ,
и
) получившиеся от пересечения вертикали с исходными характеристиками трубопроводов. Полученная таким образом точка А будет принадлежать суммарной характеристике соединения. Следовательно, суммарная характеристика последовательного соединения нескольких простых трубопроводов получается в результате сложения ординат точек исходных характеристик при данном расходе.
Параллельным называется соединение трубопроводов, имеющих две общие точки (точку разветвления и точку смыкания). Пример параллельного соединения трех простых трубопроводов приведен на рисунке 5.3, в. Очевидно, что расход Q жидкости в гидросистеме до разветвления (точка М) и после смыкания (точка N) один и тот же и равен сумме расходов Q1, Q2 и Q3 в параллельных ветвях.
Если обозначить полные напоры в точках M и N через НM и HN, то для каждого трубопровода потеря напора равна разности этих напоров:
;
;
,
т. е. в параллельных трубопроводах потери напора всегда одинаковы. Это объясняется тем, что при таком соединении, несмотря на разные гидравлические сопротивления каждого простого трубопровода, расходы Q1, Q2 и Q3 распределяются между ними так, что потери остаются равными.
Таким образом, система уравнений для параллельного соединения имеет вид
(5.8)
Потери напора в каждом трубопроводе, входящем в соединение, могут быть определены по формулам вида (5.7). Таким образом, система уравнений (5.8), дополненная формулами (5.7), является основой для аналитического расчета гидросистем с параллельным соединением трубопроводов.
На рисунке 5.3, г показан способ получения суммарной характеристики параллельного соединения. Для этого используются характеристики простых трубопроводов 1, 2 и 3, которые строятся по зависимостям (5.7).
Для получения точки, принадлежащей суммарной характеристике параллельного соединения, необходимо в соответствии с (5.8) сложить расходы в исходных трубопроводах при одинаковых потерях напора. С этой целью на графике проводят произвольную горизонтальную линию (при произвольной потере ). По этой горизонтали графически суммируют отрезки (расходы Q1, Q2 и Q3), получившиеся от пересечения горизонтали с исходными характеристиками трубопроводов. Полученная таким образом точка В принадлежит суммарной характеристике соединения. Следовательно, суммарная характеристика параллельного соединения трубопроводов получается в результате сложения абсцисс точек исходных характеристик при данных потерях.
По аналогичному методу строятся суммарные характеристики для разветвленных трубопроводов. Разветвленным соединением называется совокупность нескольких трубопроводов, имеющих одну общую точку (место разветвления или смыкания труб).
Рассмотренные выше последовательное и параллельное соединения, строго говоря, относятся к разряду сложных трубопроводов. Однако в гидравлике под сложным трубопроводом, как правило, понимают соединение нескольких последовательно и параллельно включенных простых трубопроводов.
На рисунке 5.3, д приведен пример такого сложного трубопровода, состоящего из трех трубопроводов 1, 2 и 3. Трубопровод 1 включен последовательно по отношению к трубопроводам 2 и 3. Трубопроводы 2 и 3 можно считать параллельными, так как они имеют общую точку разветвления (точка М) и подают жидкость в один и тот же гидробак.
Для сложных трубопроводов расчет, как правило, проводится графическим методом. При этом рекомендуется следующая последовательность:
1) сложный трубопровод разбивается на ряд простых трубопроводов;
2) для каждого простого трубопровода строится его характеристика;
3) графическим сложением получают характеристику сложного трубопровода.
На рисунке 5.3, е показана последовательность графических построений при получении суммарной характеристики () сложного трубопровода. Вначале складываются характеристики трубопроводов
и
по правилу сложения характеристик параллельных трубопроводов, а затем характеристика
параллельного соединения складывается с характеристикой
по правилу сложения характеристик последовательно соединенных трубопроводов и получается характеристика всего сложного трубопровода
.
Имея построенный таким образом график (см. рисунок 5.3, е) для сложного трубопровода, можно достаточно просто по известному значению расхода Q1, поступающего в гидросистему, определить потребный напор Hпотр = для всего сложного трубопровода, расходы Q2 и Q3 в параллельных ветвях, а также потери напора
,
и
в каждом простом трубопроводе.
5.4 Трубопровод с насосной подачей
Как уже отмечалось, основным способом подачи жидкости в машиностроении является принудительное нагнетание ее насосом. Насосом называется гидравлическое устройство, преобразующее механическую энергию привода в энергию потока рабочей жидкости. В гидравлике трубопровод, в котором движение жидкости обеспечивается за счет насоса, называется трубопроводом с насосной подачей (рисунок 5.4, а).
Целью расчета трубопровода с насосной подачей, как правило, является определение напора, создаваемого насосом (напора насоса). Напором насоса Нн называется полная механическая энергия, переданная насосом единице веса жидкости. Таким образом, для определения Нн необходимо оценить приращение полной удельной энергии жидкости при прохождении ее через насос, т.е.
, (5.9)
где Нвх, Нвых — удельная энергия жидкости соответственно на входе и выходе из насоса.
Рассмотрим работу разомкнутого трубопровода с насосной подачей (см. рисунок 5.4, а). Насос перекачивает жидкость из нижнего резервуара А с давлением над жидкостью p0 в другой резервуар Б, в котором давление р3. Высота расположения насоса относительно нижнего уровня жидкости H1 называется высотой всасывания, а трубопровод, по которому жидкость поступает к насосу, всасывающим трубопроводом, или гидролинией всасывания. Высота расположения конечного сечения трубопровода или верхнего уровня жидкости Н2 называется высотой нагнетания, а трубопровод, по которому жидкость движется от насоса, напорным, или гидролинией нагнетания.
Запишем уравнение Бернулли для потока жидкости во всасывающем трубопроводе, т.е. для сечений 0-0 и 1-1:
, (5.10)
где — потери напора во всасывающем трубопроводе.
Уравнение (5.10) является основным для расчета всасывающих трубопроводов. Давление p0 обычно ограничено (чаще всего это атмосферное давление). Поэтому целью расчета всасывающего трубопровода, как правило, является определение давления перед насосом. Оно должно быть выше давления насыщенных паров жидкости. Это необходимо для исключения возникновения кавитации на входе в насос. Из уравнения (5.10) можно найти удельную энергию жидкости на входе в насос:
. (5.11)
Запишем уравнение Бернулли для потока жидкости в напорном трубопроводе, т. е. для сечений 2-2 и 3-3:
, (5.12)
где — потери напора в напорном трубопроводе.
Левая часть этого уравнения представляет собой удельную энергию жидкости на выходе из насоса Hвых. Подставив в (5.9) правые части зависимостей (5.11) для Hвх и (5.12) для Hвых, получим
, (5.13)
Как следует из уравнения (5.13), напор насоса Hн обеспечивает подъем жидкости на высоту (Н1+H2), повышение давления с р0 до p3 и расходуется на преодоление сопротивлений во всасывающем и напорном трубопроводах.
Если в правой части уравнения (5.13) обозначить Hст и заменить
на KQm , то получим Hн=Hcr + KQm.
Сравним последнее выражение с формулой (5.2), определяющей потребный напор для трубопровода. Очевидна их полная идентичность:
, (5.14)
т.е. насос создает напор, равный потребному напору трубопровода.
Полученное уравнение (5.14) позволяет аналитически определить напор насоса. Однако в большинстве случаев аналитический способ достаточно сложен, поэтому получил распространение графический метод расчета трубопровода с насосной подачей.
Этот метод заключается в совместном построении на графике характеристики потребного напора трубопровода (или характеристики трубопровода
) и характеристики насоса
. Под характеристикой насоса понимают зависимость напора, создаваемого насосом, от расхода. Точка пересечения этих зависимостей называется рабочей точкой гидросистемы и является результатом графического решения уравнения (5.14).
На рисунке 5.4, б приведен пример такого графического решения. Здесь точка А и есть искомая рабочая точка гидросистемы. Ее координаты определяют напор Hн, создаваемый насосом, и расход Qн жидкости, поступающей от насоса в гидросистему.
Если по каким-то причинам положение рабочей точки на графике не устраивает проектировщика, то это положение можно изменить, если скорректировать какие-либо параметры трубопровода или насоса.
7.5. Гидравлический удар в трубопроводе
Гидравлическим ударом называется колебательный процесс, возникающий в трубопроводе при внезапном изменении скорости жидкости, например при остановке потока из-за быстрого перекрытия задвижки (крана).
Этот процесс очень быстротечен и характеризуется чередованием резкого повышения и понижения давления, что может привести к разрушению гидросистемы. Это вызвано тем, что кинетическая энергия движущегося потока при остановке переходит в работу по растяжению стенок труб и сжатию жидкости. Наибольшую опасность представляет начальный скачок давления.
Проследим стадии гидравлического удара, возникающего в трубопроводе при быстром перекрытии потока (рисунок 7.5).
Пусть в конце трубы, по которой жидкость движется со скоростью vq, произведено мгновенное закрытие крана А. Тогда (см. рисунок 7.5, а) скорость частиц жидкости, натолкнувшихся на кран, будет погашена, а их кинетическая энергия перейдет в работу деформации стенок трубы и жидкости. При этом стенки трубы растягиваются, а жидкость сжимается. Давление в остановившейся жидкости возрастает на Δpуд. На заторможенные частицы жидкости у крана набегают другие частицы и тоже теряют скорость, в результате чего сечение п—п перемещается вправо со скоростью с, называемой скоростью ударной волны, сама же переходная область (сечение п—п), в которой давление изменяется на величину Δpуд, называется ударной волной.
Когда ударная волна достигнет резервуара, жидкость окажется остановленной и сжатой во всей трубе, а стенки трубы — растянутыми. Ударное повышение давления Δpуд распространится на всю трубу (см. рис. 7.5, б).
Но такое состояние не является равновесным. Под действием повышенного давления (р0 + Δpуд) частицы жидкости устремятся из трубы в резервуар, причем это движение начнется с сечения, непосредственно прилегающего к резервуару. Теперь сечение п—п перемещается по трубопроводу в обратном направлении — к крану — с той же скоростью с, оставляя за собой в жидкости давление p0 (см. рисунке 7.5, в).
Рисунок 7.5 — Стадии гидравлического удара в трубопроводе
Жидкость и стенки трубы возвращаются к начальному состоянию, соответствующему давлению p0. Работа деформации полностью переходит в кинетическую энергию, и жидкость в трубе приобретает первоначальную скорость , но направленную в противоположную сторону.
С этой скоростью «жидкая колонна» (см. рисунок 7.5, г) стремится оторваться от крана, в результате возникает отрицательная ударная волна (давление в жидкости уменьшается на то же значение Δpуд). Граница между двумя состояниями жидкости направляется от крана к резервуару со скоростью с, оставляя за собой сжавшиеся стенки трубы и расширившуюся жидкость (см. рисунок 7.5, д). Кинетическая энергия жидкости вновь переходит в работу деформации, но с противоположным знаком.
Состояние жидкости в трубе в момент прихода отрицательной ударной волны к резервуару показано на рисунке 7.5, е. Так же как и для случая, изображенного на рисунке 7.5, б, оно не является равновесным, так как жидкость в трубе находится под давлением (р0 + Δpуд), меньшим, чем в резервуаре. На рисунке 7.5, ж показан процесс выравнивания давления в трубе и резервуаре, сопровождающийся возникновением движения жидкости со скоростью .
Очевидно, что как только отраженная от резервуара ударная волна достигнет крана, возникнет ситуация, уже имевшая место в момент закрытия крана. Весь цикл гидравлического удара повторится.
Теоретическое и экспериментальное исследования гидравлического удара в трубах было впервые выполнено Н.Е.Жуковским. В его опытах было зарегистрировано до 12 полных циклов с постепенным уменьшением Δpуд. В результате проведенных исследований Н.Е.Жуковский получил аналитические зависимости, позволяющие оценить ударное давление Δpуд. Одна из этих формул, получившая имя Н.Е.Жуковского, имеет вид
, (7.14)
где скорость распространения ударной волны с определяется по формуле
,
Рекомендуем посмотреть лекцию «8. Постановка задачи идентификации».
где К — объемный модуль упругости жидкости; Е — модуль упругости материала стенки трубопровода; d и δ — соответственно внутренний диаметр и толщина стенки трубопровода.
Формула (7.14) справедлива при прямом гидравлическом ударе, когда время перекрытия потока tзакр меньше фазы гидравлического удара t0:
,
где l — длина трубы.
Фаза гидравлического удара t0 — это время, за которое ударная волна движется от крана к резервуару и возвращается обратно. При tзакр > t0 ударное давление получается меньше, и такой гидроудар называют непрямым.
При необходимости можно использовать известные способы «смягчения» гидравлического удара. Наиболее эффективным из них является увеличение времени срабатывания кранов или других устройств, перекрывающих поток жидкости. Аналогичный эффект достигается установкой перед устройствами, перекрывающими поток жидкости, гидроаккумуляторов или предохранительных клапанов. Уменьшение скорости движения жидкости в трубопроводе за счет увеличения внутреннего диаметра труб при заданном расходе и уменьшение длины трубопроводов (уменьшение фазы гидравлического удара) также способствуют снижению ударного давления.
(кг/м3) – плотность
(н/м3) – удельный вес
ГИДРОСТАТИКА
р — давление или сжимающие напряжение (н/м2 = Па)
Свойства:
Давление всегда направлено к поверхности по внутренней нормали.
Действует одинаково по всем направлениям (не зависит от угла наклона площадки)
Основное уравнение гидростатики:
рА = ро + рв; рв = h·γ
рА – абсолютное давление;
ро – давление действующее на поверхность жидкости;
рв – весовое давление, т.е. давление столба жидкости.
рв = h·γ
h – глубина расположения точки;
γ – удельный вес жидкости.
При атмосферном давлении на поверхности:
рА = ра + ризб; ризб = hизб·γ
ра – атмосферное давление;
ризб – избыточное давление.
Выводы:
-
Закон Паскаля. Давление действующее на поверхность жидкости передается во все ее точки без изменения.
-
Любая горизонтальная плоскость проведенная в жидкости, является плоскостью равного давления.
-
Можем измерять величину давления эквивалентной ему высотой столба жидкости.
р = h·γ, отсюда h = р/γ
Например давление величиной в 1 атм. р = 1 кгс/см2 соответствует
h = 10 м вод. столба
Сила давления жидкости на плоскую поверхность
Р = рсS = hсγS (н)
рс = hсγ – давление в центре тяжести при атмосферном давлении на поверхности
рс = hсγ + рМ, либо рс = hсγ – рВАК
hс – глубина расположения центра тяжести поверхности (м);
S – площадь поверхности (м2).
Потенциальная энергия покоящейся жидкости величина постоянная, т.е. одинаковая для всех точек жидкости
Удельная энергия (напор) Э = Е/G = Е/mg (м)
Z + hп = НГС = Э = const
Z – геометрический напор;
hп – пьезометрический напор;
НГС –гидростатический напор или полная удельная потенциальная энергия жидкости.
ГИДРОДИНАМИКА
Уравнение неразрывности
Q = V1ω1 = V2ω2 = const
Q – расход жидкости (м3/с);
V – средняя скорость потока (м/с);
Ω – площадь живого сечения потока (м2).
Vi = Q / ωi – средняя скорость потока
Уравнение Бернулли для идеальной жидкости (при действии сил давления и сил тяжести)
где z — геометрический напор, м;
P/γ — приведенная пьезометрическая высота (если Р — абсолютное давление) или пьезометрическая высота (если Р — избыточное давление), м;
V2/2g — скоростной напор, м.
— гидростатический напор,
удельная потенциальная энергия жидкости
НГС = Э – гидродинамический напор или полная удельная энергия
Уравнение Бернулли для реальной жидкости (с учетом сил трения (вязкости)).
Σh = hпот = hℓ + hм – потери энергии при движении жидкости от 1 до 2 сечений (м);
α= ЕКД /ЕКУ – коэффициент кинетический энергии (коэффициент Кориолиса);
hℓ — потери по длине.
(м)
λ – коэффициент гидравлического трения f(Rе·Δ);
hм – потери на местных сопротивлениях.
(м)
РЕЖИМЫ ДВИЖЕНИЯ
Число (критерий) Рейнольдса
Для кругло-цилиндрических труб
(м)
RГ – гидравлический радиус;
ω – площадь живого сечения потока (м2);
Х – смоченный периметр.
Ламинарный режим: Rе < Rекр ≈ 2320
Эпюра скорости при ламинарном движении.
umax = 2V; α = 2; λ = f(Rе); λ = 64/Rе; hℓ = f (V1…1,4)
Турбулентный режим: Rе > Rекр
Профиль скорости при турбулентном движении
Толщина ламинарной пленки δ уменьшается с увеличением скорости V (числа Рейнольдса)
u ≈ V; α = 1…1,4
В турбулентном режиме имеется три вида трения:
Гидравлически гладкие русла
λ = f(Rе) λ = 0,3164/Rе0,25
Смешанное трение
λ = f(Rе;Δ)
Шероховатое трение, квадратичная область турбулентного режима
λ = f (Δ); λ = 0,11(Δ /d)0,25
hℓ = f (V1,7…2)
СКОРОСТЬ ДВИЖЕНИЯ (ИСТЕЧЕНИЯ ЧЕРЕЗ ОТВЕРСТИЯ И НАСАДКИ
(м/с)
— коэффициент скорости
Но – действующий (расчетный напор (м)
Расход жидкости
(м3/с)
μ = φε – коэффициент расхода;
ω – площадь проходного (живого) сечения потока (м2);
Но – действующий напор (м).