Геометрическая сумма векторов как найти

В механике существуют два типа величин:

  • скалярные величины, задающие некоторое числовое значение — время, температура, масса и т.д.
  • векторные величины, которые вместе с некоторым числовым значением задают направление — скорость, сила и т.д..

Рассмотрим сначала алгебраический подход к сложению векторов.

Покоординатное сложение векторов.

Пусть даны два вектора, заданные покоординатно ( чтобы вычислить координаты вектора, нужно вычесть из соответствующих координат его конца соответствующие координаты его начала, т.е. из первой координаты — первую, из второй — вторую и т.д.):

сложение векторов

Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:

Покоординатное сложение векторов

В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.

Теперь перейдем к геометрическому смыслу сложения двух векторов:

При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:

  • правило параллелограмма
  • правило треугольника
  • тригонометрический способ

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Процедура сложения векторов по правилу параллелограмма заключается в следующем:

  • нарисовать первый вектор, учитывая его величину и направление
  • от начала первого вектора нарисовать второй вектор, также используя и его величину, и его направление
  • дополнить рисунок до параллелограмма, считая, что два нарисованных вектора — это его стороны
  • результирующим вектором будет диагональ параллелограмма, причем его начало будет совпадать с началом первого (а, значит, и второго) вектора.

Правило треугольника. Сложение векторов по правилу треугольника.

Правило треугольника. Сложение векторов по правилу треугольника.

Сложение векторов по правилу треугольника заключается в следующем:

  • нарисовать первый вектор, используя данные о его длине ( числовой величине) и направлении
  • от конца первого вектора нарисовать второй вектор, также учитывая и его размер, и его направление
  • результирующим вектором будет вектор, начало которого совпадает с началом первого вектора, а конец — с концом второго.

Тригонометрический способ. Сложение векторов тригонометрическим способом.

Тригонометрический способ. Сложение векторов тригонометрическим способом. Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:

  • Fрез. = [ F12 + F22 -2 F1 F2 cos(180о-α) ]1/2         (1)
    • где
      • F = числовое значение вектора
      • α = угол между векторами 1 и 2

Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:

  • β = arcsin[ F*sin(180o-α) / FR ]         (2)
    • где
      • α = угол между исходными векторами

Пример — сложение векторов.

Сила 1 равна 5кН и воздействует на тело в направлении, на 80o отличающемся от направления действия второй силы, равной 8 кН.

Результирующая сила вычисляется следующим образом:

Fрез = [ (5 кН)2 + (8 кН)2 — 2 (5 кН)(8 kН) cos(180o — (80o)) ]1/2

    = 10,14кН

Угол между результирующей силой и первой силой равен:

β= arcsin[ (8кН) sin(180o — (80o)) / (10,14кН) ]

    = 51o

А угол между второй и результирующей силой можно посчитать следующим образом: as

α = arcsin [ (5 кН) sin(180o — (80o)) / (10,2 кН) ]

    = 29o

Он-лайн калькулятор сложения векторов.

Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.

Распечатать: Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма.

Операции над векторами и их свойства: сложение и умножение

Прежде чем приступить к тематике статьи, напомним основные понятия.

Вектор – отрезок прямой, характеризующийся численным значением и направлением. Вектор обозначается строчной латинской буквой со стрелкой сверху. При наличии конкретных точек границ обозначение вектора выглядит как две прописные латинские буквы (маркирующие границы вектора) также со стрелкой сверху.

Нулевой вектор – любая точка плоскости, обозначается как нуль со стрелкой сверху.

Длина вектора – величина, равная или большая нуля, определяющая длину отрезка, составляющего вектор.

Коллинеарные векторы – лежащие на одной прямой или на параллельных прямых. Не выполняющие это условие векторы называют неколлинеарными.

Сложение двух векторов

Исходные данные: векторы a → и b → . Для выполнения над ними операции сложения необходимо из произвольной точки отложить вектор A B → , равный вектору а → ; из полученной точки undefined – вектор В С → , равный вектору b → . Соединив точки undefined и C , получаем отрезок (вектор) А С → , который и будет являться суммой исходных данных. Иначе описанную схему сложения векторов называют правилом треугольника.

Геометрически сложение векторов выглядит так:

— для неколлинеарных векторов:

— для коллинеарных (сонаправленных или противоположнонаправленных) векторов:

Сложение нескольких векторов

Взяв за основу описанную выше схему, мы получаем возможность произвести операцию сложения векторов в количестве более 2: поочередно прибавляя каждый последующий вектор.

Исходные данные: векторы a → , b → , c → , d → . Из произвольной точки А на плоскости необходимо отложить отрезок (вектор), равный вектору a → ; затем от конца полученного вектора откладывается вектор, равный вектору b → ; далее – по тому же принципу откладываются последующие векторы. Конечной точкой последнего отложенного вектора будет точка B , а полученный отрезок (вектор) A B → – суммой всех исходных данных. Описанную схему сложения нескольких векторов называют также правилом многоугольника .

Геометрически оно выглядит следующим образом:

Отдельной схемы действия по вычитанию векторов нет, т.к. по сути разность векторов a → и b → есть сумма векторов a → и — b → .

Умножение вектора на число

Чтобы произвести действие умножения вектора на некое число k , необходимо учитывать следующие правила:
— если k > 1 , то это число приведет к растяжению вектора в k раз;
— если 0 k 1 , то это число приведет к сжатию вектора в 1 k раз;
— если k 0 , то это число приведет к смене направления вектора при одновременном выполнении одного из первых двух правил;
— если k = 1 , то вектор остается прежним;
— если одно из множителей – нулевой вектор или число, равное нулю, результатом умножения будет нулевой вектор.

Исходные данные:
1) вектор a → и число k = 2 ;
2) вектор b → и число k = — 1 3 .

Геометрически результат умножения в соответствии с указанными выше правилами будет выглядеть следующим образом:

Свойства операций над векторами

Описанным выше операциям над векторами присущи свойства, некоторые из которых очевидны, а прочие можно обосновать геометрически.

Исходные данные: векторы a → , b → , c → и произвольные действительные числа λ и μ .

  1. Свойство коммутативности: a ⇀ + b → = b → + a → .
  2. Свойство ассоциативности: ( a → + b → ) + c → = a → + ( b → + c → ) .
  3. Свойство использования нейтрального элемента по сложению (нулевой вектор 0 → ⃗). Это очевидное свойство: a → + 0 → = a →
  4. Свойство использования нейтрального элемента по умножению (число, равное единице): 1 · a → = a → . Это очевидное свойство, не предполагающее никаких геометрических преобразований.
  5. Любой ненулевой вектор a → имеет противоположный вектор — a → и верным является равенство: a → + ( — a → ) = 0 → . Указанное свойство — очевидное.
  6. Сочетательное свойство операции умножения: ( λ · µ ) · a → = λ · ( µ · a → ) . Например, растяжение вектора при умножении на число 10 можно произвести, сначала растянув вектор в 2 раза, а затем полученный результат еще в 5 раз. Также возможен вариант умножения на число 10 при сжатии вектора в 5 раз и последующего растяжения полученного результата в 50 раз.
  7. Первое распределительное свойство (очевидно): ( λ + µ ) · a → = λ · a → + µ · a → .
  8. Второе распределительное свойство: λ · ( a → + b → ) = λ · a → + λ · b → .
    Геометрически это свойство определяется подобием треугольников:

Свойства коммутативности и ассоциативности дают возможность складывать векторы в произвольном порядке.

Перечисленные свойства операций позволяют осуществлять необходимые преобразования векторно-числовых выражений аналогично привычным числовым. Рассмотрим это на примере.

Задача: упростить выражение a → — 2 · ( b → + 3 · a → )
Решение
— используя второе распределительное свойство, получим: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · ( 3 · a → )
— задействуем сочетательное свойство умножения, выражение приобретет следующий вид: a → — 2 · b → — 2 · ( 3 · a → ) = a → — 2 · b → — ( 2 · 3 ) · a → = a → — 2 · b → — 6 · a →
— используя свойство коммутативности, меняем местами слагаемые: a → — 2 · b → — 6 · a → = a → — 6 · a → — 2 · b →
— затем по первому распределительному свойству получаем: a → — 6 · a → — 2 · b → = ( 1 — 6 ) · a → — 2 · b → = — 5 · a → — 2 · b → Краткая запись решения будет выглядеть так: a → — 2 · ( b → + 3 · a → ) = a → — 2 · b → — 2 · 3 · a → = 5 · a → — 2 · b →
Ответ: a → — 2 · ( b → + 3 · a → ) = — 5 · a → — 2 · b →

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор.

Сложение векторов. Векторная сумма. Правила сложения векторов. Геометрическая сумма. Он-лайн калькулятор

В механике существуют два типа величин:

  • скалярные величины, задающие некоторое числовое значение — время, температура, масса и т.д.
  • векторные величины, которые вместе с некоторым числовым значением задают направление — скорость, сила и т.д..

Рассмотрим сначала алгебраический подход к сложению векторов.

Покоординатное сложение векторов.

Тогда координаты вектора, получившегося при сложении этих двух векторов вычисляются по формуле:

В двумерном случае все абсолютно анологично, просто отбрасываем третью координату.

Теперь перейдем к геометрическому смыслу сложения двух векторов:

При сложении векторов нужно учитывать и их числовые значения, и направления. Есть несколько широко используемых методов сложения:

  • правило параллелограмма
  • правило треугольника
  • тригонометрический способ

Правило параллелограмма. Сложение векторов по правилу параллелограмма.

Процедура сложения векторов по правилу параллелограмма заключается в следующем:

  • нарисовать первый вектор, учитывая его величину и направление
  • от начала первого вектора нарисовать второй вектор, также используя и его величину, и его направление
  • дополнить рисунок до параллелограмма, считая, что два нарисованных вектора — это его стороны
  • результирующим вектором будет диагональ параллелограмма, причем его начало будет совпадать с началом первого (а, значит, и второго) вектора.

Правило треугольника. Сложение векторов по правилу треугольника.

Сложение векторов по правилу треугольника заключается в следующем:

  • нарисовать первый вектор, используя данные о его длине ( числовой величине) и направлении
  • от конца первого вектора нарисовать второй вектор, также учитывая и его размер, и его направление
  • результирующим вектором будет вектор, начало которого совпадает с началом первого вектора, а конец — с концом второго.

Тригонометрический способ. Сложение векторов тригонометрическим способом.

Результирующий вектор сложения двух компланарных векторов может быть вычислен с помощью теоремы косинусов:

  • Fрез. = [ F1 2 + F2 2 -2 F1 F2 cos(180 о -α) ] 1/2 (1)
    • где
      • F = числовое значение вектора
      • α = угол между векторами 1 и 2

Угол между результирующим вектором и одним из исходных векторов может быть вычислен по теореме синусов:

  • β = arcsin[ F2 *sin(180 o -α) / FR ] (2)
    • где
      • α = угол между исходными векторами

Пример — сложение векторов.

Сила 1 равна 5кН и воздействует на тело в направлении, на 80 o отличающемся от направления действия второй силы, равной 8 кН.

Результирующая сила вычисляется следующим образом:

Fрез = [ (5 кН) 2 + (8 кН) 2 — 2 (5 кН)(8 kН) cos(180 o — (80 o )) ] 1/2

Угол между результирующей силой и первой силой равен:

А угол между второй и результирующей силой можно посчитать следующим образом: as

α = arcsin [ (5 кН) sin(180 o — (80 o )) / (10,2 кН) ]

Он-лайн калькулятор сложения векторов.

Калькулятор ниже может быть использован для любвых векторных величин ( силы, скорости и т.д.) Точка начала вектора совпадает с началами обоих исходных векторов.

Консультации и техническая
поддержка сайта: Zavarka Team

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Геометрическая интерпретация:

Суммой a и b является вектор c , начало которого совпадает с началом a , а конец – с концом b . При этом конец вектора a должен совпадать с началом вектора b .

Для сложения векторов также используется правило параллелограмма.

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c , совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

Элементы вектора c равняются попарной сумме соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a + b = x + bx; ay + by>
Для трехмерных задач a + b = x + bx; ay + by; az + bz>
Для n-мерных векторов a + b = 1 + b1; a2 + b2; . an + bn>

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: ( a + b ) + c = a + ( b + c )

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (- a ) = 0

Примечание: Вектор – a коллинеарен и равен по длине a , но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Если из вектора a вычесть b , то получится c , причем должно соблюдаться условие:

Формула вычитания векторов

Элементы вектора c равны попарной разности соответствующих элементов a и b .

» data-lang=»default» data-override=»<«emptyTable»:»»,»info»:»»,»infoEmpty»:»»,»infoFiltered»:»»,»lengthMenu»:»»,»search»:»»,»zeroRecords»:»»,»exportLabel»:»»,»file»:»default»>» data-merged=»[]» data-responsive-mode=»2″ data-from-history=»0″>

Для плоских задач a — b = x — bx; ay — by>
Для трехмерных задач a — b = x — bx; ay — by; az — bz>
Для n-мерных векторов a — b = 1 — b1; a2 — b2; . an — bn>

Примеры задач

Задание 1
Вычислим сумму векторов и .

Задание 2
Найдем разность векторов и .

источники:

http://dpva.ru/Guide/GuideMathematics/linearAlgebra/vectorsaddition/

Сумма и разность векторов

В данной публикации мы рассмотрим, как найти сумму и разность векторов, приведем геометрическую интерпретацию, а также формулы, свойства и примеры этих действий.

  • Сумма векторов

    • Формула сложения векторов

    • Свойства сложения векторов

  • Разность векторов

    • Формула вычитания векторов

  • Примеры задач

Сумма векторов

Сложение векторов выполняется по правилу треугольника.

Правило треугольника для сложения векторов

Геометрическая интерпретация:

Суммой a и b является вектор c, начало которого совпадает с началом a, а конец – с концом b. При этом конец вектора a должен совпадать с началом вектора b.

Для сложения векторов также используется правило параллелограмма.

Правило параллелограмма для сложения векторов

Два неколлинеарных вектора a и b можно привести к общему началу, и в этом случае их суммой является вектор c, совпадающий с диагональю параллелограмма и берущий начало в той же точке, что и исходные векторы.

Формула сложения векторов

ci = ai + bi

Элементы вектора c равняются попарной сумме соответствующих элементов a и b.

Для плоских задач a + b = {ax + bx; ay + by}
Для трехмерных задач a + b = {ax + bx; ay + by; az + bz}
Для n-мерных векторов a + b = {a1 + b1; a2 + b2; … an + bn}

Свойства сложения векторов

1. Коммутативность: a + b = b + a

2. Ассоциативность: (a + b) + c = a + (b + c)

3. Прибавление к нулю: a + 0 = a

4. Сумма противоположных векторов: a + (-a) = 0

Примечание: Вектор a коллинеарен и равен по длине a, но имеет противоположное направление, из-за чего называется противоположным.

Разность векторов

Для вычитания векторов также применяется правило треугольника.

Правило треугольника для вычитания векторов

Если из вектора a вычесть b, то получится c, причем должно соблюдаться условие: b + c = a

Формула вычитания векторов

ci = ai – bi

Элементы вектора c равны попарной разности соответствующих элементов a и b.

Для плоских задач ab = {ax — bx; ay — by}
Для трехмерных задач ab = {ax — bx; ay — by; az — bz}
Для n-мерных векторов ab = {a1 — b1; a2 — b2; … an — bn}

Примеры задач

Задание 1
Вычислим сумму векторов a = {3; 5} и b = {2; 7}.

Решение:
a + b = {3 + 2; 5 + 7} = {5; 12}.

Задание 2
Найдем разность векторов a = {4; 8; -2} и b = {-1; 9; 5}.

Решение:
ab = {4 – (-1); 8 – 9; -2 – 5} = {5; -1; -7}.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти полуоси окружности
  • Как найти ворд в виндоус 10
  • Высота трапеции как найти зная только основания
  • Как найти разряд аккумулятора на авто
  • Задача с тем как найти тангенс угла

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии