Формула линейной функции по графику как составить формулу

Инфоурок


Алгебра

КонспектыАлгоритм определения формулы линейной функции по графику

Алгоритм определения формулы линейной функции по графику

Скачать материал

Скачать материал

  • Сейчас обучается 24 человека из 19 регионов

  • Сейчас обучается 48 человек из 25 регионов

Найдите материал к любому уроку, указав свой предмет (категорию), класс, учебник и тему:

6 268 118 материалов в базе

  • Выберите категорию:

  • Выберите учебник и тему

  • Выберите класс:

  • Тип материала:

    • Все материалы

    • Статьи

    • Научные работы

    • Видеоуроки

    • Презентации

    • Конспекты

    • Тесты

    • Рабочие программы

    • Другие методич. материалы

Найти материалы

Материал подходит для УМК

  • «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    «Алгебра», Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. / Под ред. Теляковского С.А.

    Тема

    16. Линейная функция и её график

    Больше материалов по этой теме

Другие материалы

Вам будут интересны эти курсы:

  • Курс повышения квалификации «Изучение вероятностно-стохастической линии в школьном курсе математики в условиях перехода к новым образовательным стандартам»

  • Курс профессиональной переподготовки «Экономика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Методика написания учебной и научно-исследовательской работы в школе (доклад, реферат, эссе, статья) в процессе реализации метапредметных задач ФГОС ОО»

  • Курс повышения квалификации «Основы местного самоуправления и муниципальной службы»

  • Курс повышения квалификации «Организация практики студентов в соответствии с требованиями ФГОС юридических направлений подготовки»

  • Курс профессиональной переподготовки «Логистика: теория и методика преподавания в образовательной организации»

  • Курс повышения квалификации «Разработка бизнес-плана и анализ инвестиционных проектов»

  • Курс повышения квалификации «Особенности подготовки к сдаче ОГЭ по математике в условиях реализации ФГОС ООО»

  • Курс профессиональной переподготовки «Математика и информатика: теория и методика преподавания в образовательной организации»

  • Курс профессиональной переподготовки «Организация маркетинга в туризме»

  • Курс повышения квалификации «Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО»

  • Курс повышения квалификации «Мировая экономика и международные экономические отношения»

  • Курс профессиональной переподготовки «Управление информационной средой на основе инноваций»

  • Скачать материал


    • 30.09.2020


      55126
    • DOCX
      549.2 кбайт
    • 253
      скачивания
    • Оцените материал:





  • Настоящий материал опубликован пользователем Хидиятова Залифа Даутовна. Инфоурок является
    информационным посредником и предоставляет пользователям возможность размещать на сайте
    методические материалы. Всю ответственность за опубликованные материалы, содержащиеся в них
    сведения, а также за соблюдение авторских прав несут пользователи, загрузившие материал на сайт

    Если Вы считаете, что материал нарушает авторские права либо по каким-то другим причинам должен быть удален с
    сайта, Вы можете оставить жалобу на материал.

    Удалить материал

  • Хидиятова Залифа Даутовна

    • На сайте: 6 лет и 6 месяцев
    • Подписчики: 0
    • Всего просмотров: 104698
    • Всего материалов:

      37

Голубева Наталья Викторовна

Материал используется на уроке алгебры в 7 классе при изучении линейной функции.

Скачать:

Предварительный просмотр:

Подписи к слайдам:

Слайд 1

2 урок . По графику научить определять заданную функцию. Тема «Линейная функция и её график».

Слайд 2

На рисунке представлен график функции у = kx + b. Записать формулу линейной функции, соответствующей данному графику. Так как ордината точки пересечения графика функции с осью Оy равна 1, следовательно, b=1. у = kx + 1 Выбираем на графике произвольную точку и определяем её координаты: если x = 2, то у = 2 . Подставим в нашу формулу и получим уравнение относительно k. 2 = 2k+1 2k=1 k = 0.5 Записываем формулу линейной функции: у = 0,5х + 1.

По теме: методические разработки, презентации и конспекты

  • Мне нравится 

 

Предложу еще одно решение.

Конечно, можно решать по алгоритму: нахождения координат 2 точек и подставив их в общее уравнение прямой y = kx + b, получим систему из 2 уравнений, решив которую найдем k и b.

Этот алгоритм описал подробно «габбас».


Видим, что на графике прямая. Общее уравнение прямой y = kx + b

Сначала определим коэффициент k.

k — показывает уровень наклона прямой

По рисунку видим, что прямая идет из 2-й в 4-ю четверть, значит k — будет отрицательным.

Далее смотрим что при изменении х на 1, у сдвигается на -2. Значит k = -2/1 = -2.


Теперь определим b

b — это сдвиг прямой по оси y относительно начальной функции (начальная проходит через начало координат: х=0; y=0)

Смотрим при х=0, у функции «у» сдвинулся в -4, Значит b = -4

Ответ: Получили уравнение y = -2•x — 4

В новой 9 задаче профильного ЕГЭ много заданий на линейные функции. Самое сложное, что нужно сделать, решая эти задачи – определить формулу линейной функции, т.е. найти (k) и (b) по графику. Примеры таких заданий (решения будут внизу статьи):

пример нового 9 задание ЕГЭ

Новое задание ЕГЭ с линейной функцией

В статье я расскажу про два простых способа найти (k) и (b), если известен график линейной функции.

Способ 1

Первый способ основывается на трех фактах:

  1. Линейная функция пересекает ось (y) в точке (b).
    Примеры:

    Как определить b по линейной функции

    Но не советую определять так (b), если прямая пересекает ось не в целом значении или если точка пересечения вообще не видна на графике. Для таких случаев пользуйтесь вторым способом.

    Примеры:

    В каких случаях b не надо определять

  2. Если функция возрастает, то знак коэффициента (k) плюс, если убывает – минус, а если постоянна, то (k=0).

    Примеры:

    Как определить знак k у линейной функции

  3. Чтоб конкретнее определить (k) надо построить на прямой прямоугольный треугольник так, чтобы гипотенуза лежала на графике функции, а вершины треугольника совпадали с вершинами клеточек. Далее, чтоб определить (k) нужно вертикальную сторону треугольника поделить на горизонтальную и поставить знак согласно возрастанию/убыванию функции.

    Примеры:

    Как найти k у линейной функции

Пример (ЕГЭ)

пример 9 задания ЕГЭ

Давайте пока что не будем искать формулу иррациональной функции, сосредоточимся только на линейной функции.

решение 9 задания ЕГЭ

(b=3) – это сразу видно. Функция идет вниз, значит (k<0).

Достроим прямую до прямоугольного треугольника. Вершинами будут жирные точки, которые нам дали в задаче.

решение 9 задания ЕГЭ

(k=-frac{AC}{BC}=-frac{1}{3}). Получается (g(x)=-frac{1}{3}x+3).

Способ 1 быстрее способа 2, но не во всех ситуациях помогает. Поэтому важно владеть и вторым способом тоже.

Способ 2

Вы обращали внимание, что в задачах ЕГЭ на прямых всегда жирно выделяют 2 точки? Так вот, чтобы найти формулу линейной функции, достаточно подставить координаты этих точек в формулу (f(x)=kx+b) и решить получившуюся систему уравнений.

Пример (ЕГЭ)

Новое задание ЕГЭ с линейной функцией

Обозначим жирные точки какими-нибудь буквами и найдем их координаты.

решение 9 задания ЕГЭ

(A(-2;2)) и (B(2;-5)) подставим эти значения вместо (x) и (f(x)) в формулу (f(x)=kx+b):

Получим:

(begin{cases}2=-2k+b\-5=2k+bend{cases})

Теперь найдем (k) и (b), решив эту систему.

Для этого сложим уравнения друг с другом, чтобы исчезло (k):

(2+(-5)=-2k+b+2k+b)
(-3=2b)
(b=-1,5)

Теперь подставим найденное (b) во второе уравнение системы и найдем (k):

(-5=2k-1,5)
(-5+1,5=2k)
(-3,5=2k)
(k=-1,75)

Получается (f(x)=-1,75x-1,5). Остается последний шаг – вычислим при каком иксе функция, то есть (f(x)), равна (16):

(16=-1,75x-1,5)
(17,5=-1,75x)
(x=-10).

Ответ: (-10).

Пример (ЕГЭ)

пример нового 9 задание ЕГЭ

Чтоб решить задачу, нам понадобятся формулы каждой из двух функций. Давайте формулу нижней функции найдем с помощью способа 1, а формулу верхней с помощью способа 2. Начнем с нижней функции.

решение 9 задания ЕГЭ

Функция (f(x)) возрастает, значит (k>0). (k=+frac{AC}{BC}=frac{4}{4}=1,b=1). (f(x)=x+1).

Теперь перейдем к функции (g(x)). Найдем координаты точек (D) и (E): (D(-2;4)), (E(-4;1)). Можно составить систему:

(begin{cases}4=-2k+b\1=-4k+bend{cases})

Вычтем второе уравнение из первого, чтоб убрать (b):

(4-1=-2k+b-(-4k+b))
(3=2k)
(k=1,5)

Найдем (b):

(4=-2cdot 1,5+b)
(4=-3+b)
(b=7)

(g(x)=1,5x+7). Обе функции найдены, теперь можно найти абсциссу (икс) точки пересечения. Приравняем (f(x)) и (g(x)).

(x+1=1,5x+7)
(x-1,5x=7-1)
(-0,5x=6)
(x=6:(-0,5))
(x=-12).

Ответ: (-12).

Шпаргалка как найти k и b

Картинку в хорошем качестве, можно скачать нажав на кнопку «скачать статью».

Смотрите также:
Как определить a, b и c по графику параболы

Скачать статью

построить график линейной функции:

a)

y=13x+1,x∈−6;3

;  b)

y=13x+1,x∈−6;3

.

Составим таблицу значений функции:

(x) (-6) (3)
(y) (-1) (2)

Построим на координатной плоскости (xOy) точки ((-6;-1)) и ((3;2)) и

проведём через них прямую.

Далее выделим отрезок, соединяющий построенные точки.

Этот отрезок и есть график линейной функции

y=13x+1,x∈−6;3

.

Точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены тёмными кружочками.

рисунок 2.png

b) Во втором случае функция та же, только значения (x=-6) и (x=3) не рассматриваются, так как они не принадлежат интервалу ((-6;3)). 

Поэтому точки ((-6); (-1)) и ((3); (2)) на рисунке отмечены светлыми кружочками.

рисунок 3.png

По графику линейной функции, можно определить наибольшее и наименьшее значения линейной функции на заданном отрезке.

В случае

a)

y=13x+1,x∈−6;3

, имеем:

yнаиб

 (= 2) и

yнаим

 (= -1);

b)

y=13x+1,x∈−6;3

, концы отрезка не рассматриваются, поэтому наибольшего и наименьшего значений нет.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти свою форму стрелок
  • Как правильно составить малый бизнес план что это такое
  • Как найти пусковые провода
  • Как найти фотки с флешки
  • Как составить кпи

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии