Есть модуль комплексного числа как найти

Комплексные числа

В математике кроме натуральных, рациональных и вещественных чисел имеется ещё один вид, называемый комплексными числами. Такое множество принято обозначать символом $ mathbb{C} $.

Рассмотрим, что из себя представляет комплексное число. Запишем его таким образом: $ z = a + ib $, в котором мнимая единица $ i = sqrt{-1} $, числа $ a,b in mathbb{R} $ вещественные. 

Если положить $ b = 0 $, то комплексное число превращается в вещественное. Таким образом, можно сделать вывод, что действительные числа это частный случай комплексных и записать это в виде подмножества $ mathbb{R} subset mathbb{C} $. К слову говоря также возможно, что $ a = 0 $.

Принято записывать мнимую часть комплексного числа как $ Im(z) = b $, а действительную $ Re(z) = a $.

Введем понятие комплексно-сопряженных чисел. К каждому комплексному числу $ z = a+ib $ существует такое, что $ overline{z} = a-ib $, которое и называется сопряженным. Такие числа отличаются друг от друга только знаками между действительной и мнимой частью.

Формы

Так сложилось в математике, что у данных чисел несколько форм. Число одно и тоже, но записать его можно по-разному:

  1. Алгебраическая $ z = a+ib $
  2. Показательная $ z = |z|e^{ivarphi} $
  3. Тригонометрическая $ z = |z|cdot(cos(varphi)+isin(varphi)) $

Далее с примерами решений вы узнаете как переводить комплексные числа из одной формы в другую путем несложных действий в обе стороны.

Изображение

Изучение выше мы начали с алгебраической формы. Так как она является основополагающей. Чтобы было понятно в этой же форме изобразим комплексное число на плоскости:

комплексные числаВидим, что $ a,b in mathbb{R} $ расположены на соответствующих осях плоскости. 

Комплексное число $ z = a+ib $ представляется в виде вектора $ overline{z} $.

Аргумент обозначается $ varphi $.

Модуль $ |z| $ равняется длине вектора  $ overline{z} $ и находится по формуле $ |z| = sqrt{a^2+b^2} $

Аргумент комплексного числа $ varphi $ нужно находить по различным формулам в зависимости от полуплоскости, в которой лежит само число.

Если:

  1. $ a>0 $, то $ varphi = arctgfrac{b}{a} $
  2. $ a<0, b>0 $, то $ varphi = pi + arctgfrac{b}{a} $
  3. $ a<0, b<0 $, то $ varphi = -pi + arctgfrac{b}{a} $

Операции

Над комплексными числами можно проводить различные операции, а именно:

  • Складывать и вычитать
  • Умножать и делить
  • Извлекать корни и возводить в степень
  • Переводить из одной формы в другую 

Для нахождения суммы и разности складывается и вычитаются только соответствующие друг другу члены. Мнимая часть только с мнимой, а действительная только с действительной:

$$ z_1 + z_2 = (a_1+ib_1) + (a_2+ib_2) = (a_1 + a_2)+i(b_1 + b_2) $$

$$ z_1 — z_2 = (a_1+ib_1) — (a_2+ib_2) = (a_1 — a_2)+i(b_1 — b_2) $$

Умножение в алгебраической форме:

$$ z_1 cdot z_2 = (a_1+ib_1) cdot (a_2+ib_2) = (a_1 a_2 — b_1 b_2)+i(a_1 b_2 + a_2 b_1) $$

Умножение в показательной форме:

$$ z_1 cdot z_2 = |z_1|e^{ivarphi_1} cdot |z_2|e^{ivarphi_2} = |z_1|cdot|z_2|cdot e^{i(varphi_1 + varphi_2)} $$

Деление в алгебраической форме:

$$ frac{z_1}{z_2} = frac{a_1+ib_1}{a_2+ib_2} = frac{a_1 a_2 + b_1 b_2 }{a_2 ^2 + b_2 ^2} + i frac{a_2 b_1 — a_1 b_2}{a_2 ^2 + b_2 ^2} $$

Деление в показательной форме:

$$ frac{z_1}{z_2} = frac{|z_1|e^{ivarphi_1}}{|z_2|e^{ivarphi_2}} = frac{|z_1|}{|z_2|}e^{i(varphi_1 — varphi_2)} $$

Для возведения в степень необходимо умножить комплексное число само на себя необходимое количество раз, либо воспользоваться формулой Муавра:

$$ z^n = |z|^n(cos nvarphi+isin nvarphi) $$

Для извлечения корней необходимо также воспользоваться формулой Муавра:

$$ z^frac{1}{n} = |z|^frac{1}{n}bigg(cos frac{varphi + 2pi k}{n}+isin frac{varphi + 2pi k}{n}bigg), k=0,1,…,n-1 $$

Так же теория комплексных чисел помогает находить корни многочленов. Например, в квадратном уравнении, если $ D<0 $, то вещественных корней нет, но есть комплексные. В последнем примере рассмотрен данный случай.

Рассмотрим на практике комплексные числа: примеры с решением.

Примеры с решением

Пример 1
Перевести из алгебраической в тригонометрическую и показательную форму:$$ z = 4-4i $$
Решение

Для начала приступим к нахождению модуля комплексного числа:

$$ |z| = sqrt{4^2 + (-4)^2} = sqrt{16 + 16} = sqrt{32} = 4sqrt{2} $$

Осталось найти аргумент:

$$ varphi = arctg frac{b}{a} = arctg frac{-4}{4} = arctg (-1) = -frac{pi}{4} $$

Теперь составляем тригонометрическую запись комплексного числа, указанного в условии примера:

$$ z = 4sqrt{2}bigg(sin(-frac{pi}{4}) + isin(-frac{pi}{4}) bigg) $$

Тут же можно записать показательную форму:

$$ z = 4sqrt{2} e^{-frac{pi}{4}i} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ

$$ z = 4sqrt{2}bigg(sin(-frac{pi}{4}) + isin(-frac{pi}{4}) bigg) $$

$$ z = 4sqrt{2} e^{-frac{pi}{4}i} $$

Пример 2

Вычислить сумму и разность заданных комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

Решение

Сначала выполним сложение. Для этого просуммируем соответствующие мнимые и вещественные части комплексных чисел:

$$ z_1 + z_2 = (3+i) + (5-2i) = (3+5)+(i-2i) = 8 — i $$

Аналогично выполним вычитание чисел:

$$ z_1 — z_2 = (3+i) — (5-2i) = (3-5)+(i+2i) = -2 + 3i $$

Ответ
$$ z_1 + z_2 = 8 — i; z_1 — z_2 = -2 + 3i $$
Пример 3

Выполнить умножение и деление комплексных чисел:

$$ z_1 = 3+i, z_2 = 5-2i $$

Решение

$$ z_1 cdot z_2 = (3+i) cdot (5-2i) = $$

Просто на просто раскроем скобки и произведем приведение подобных слагаемых, так же учтем, что $ i^2 = -1 $:

$$ = 15 — 6i + 5i -2i^2 = 15 — i — 2cdot(-1) = $$

$$ = 15 — i + 2 = 17 — i $$

Так, теперь разделим первое число на второе:

$$ frac{z_1}{z_2} = frac{3+i}{5-2i} = $$

Суть деления в том, чтобы избавиться от комплексного числа в знаменателе. Для этого нужно домножить числитель и знаменатель дроби на комплексно-сопряженное число к знаменателю и затем раскрываем все скобки:

$$ = frac{(3+i)(5+2i)}{(5-2i)(5+2i)} = frac{15 + 6i + 5i + 2i^2}{25 + 10i — 10i -4i^2} = $$

$$ = frac{15 + 11i -2}{25 + 4} = frac{13 + 11i}{29} $$

Разделим числитель на 29, чтобы записать дробь в виде алгебраической формы:

$$ frac{z_1}{z_2} = frac{13}{29} + frac{11}{29}i $$

Ответ
$$ z_1 cdot z_2 = 17 — i; frac{z_1}{z_2} = frac{13}{29} + frac{11}{29}i $$
Пример 4
Возвести комплексное число $ z = 3+3i $ в степень: a) $ n=2 $ б) $ n=7 $
Решение

1) $ n = 2 $

Для возведения в квадрат достаточно умножить число само на себя:

$$ z^2 = (3+3i)^2 = (3+3i)cdot (3+3i) = $$

Пользуемся формулой для умножения, раскрываем скобки и приводим подобные:

$$ =9 + 9i + 3icdot 3 + 9i^2 = 9 + 18i — 9 = 18i $$

Получили ответ, что $$ z^2 = (3+i)^2 = 18i $$

2) $ n = 7 $

В этом случае не всё так просто как в предыдущем случае, когда было возведение в квадрат. Конечно, можно прибегнуть к способу озвученному ранее и умножить число само на себя 7 раз, но это будет очень долгое и длинное решение. Гораздо проще будет воспользоваться формулой Муавра. Но она работает с числами в тригонометрической форме, а число задано в алгебраической. Значит, прежде переведем из одной формы в другую.

Вычисляем значение модуля:

$$ |z| = sqrt{3^2 + 3^2} = sqrt{9 + 9} = sqrt{18} = 3sqrt{2} $$

Найдем чем равен аргумент:

$$ varphi = arctg frac{3}{3} = arctg(1) = frac{pi}{4} $$

Записываем в тригонометрическом виде:

$$ z = 3sqrt{2}(cos frac{pi}{4} + isin frac{pi}{4}) $$

Возводим в степень $ n = 7 $:

$$ z^7 = (3sqrt{2})^7 (cos frac{7pi}{4} + isin frac{7pi}{4}) = $$

Преобразуем в алгебраическую форму для наглядности:

$$ =(3sqrt{2})^7 (frac{1}{sqrt{2}}-ifrac{1}{sqrt{2}}) = $$

$$ = 3^7 sqrt{2}^7 (frac{1}{sqrt{2}}-ifrac{1}{sqrt{2}}) = $$

$$ = 3^7 sqrt{2}^6 (1-i) = 3^7 cdot 8(1-i) = $$

$$ = 2187 cdot 8 (1-i) = 17496(1-i) $$

Ответ

$$ z^2 = (3+i)^2 = 18i $$ $$ z^7 = 17496(1-i) $$

Пример 5
Извлечь корень $ sqrt[3]{-1} $ над множеством $ mathbb{C} $
Решение

Представим число в тригонометрической форме. Найдем модуль и аргумент:

$$ |z| = sqrt{(-1)^2 + 0^2} = sqrt{1+0} = sqrt{1}=1 $$

$$ varphi = arctg frac{0}{-1} +pi = arctg 0 + pi = pi $$

Получаем: $$ z = (cos pi + isin pi) $$

Используем знакомую формулу Муавра для вычисления корней любой степени:

$$ z^frac{1}{n} = r^frac{1}{n}bigg(cos frac{varphi + 2pi k}{n}+isin frac{varphi + 2pi k}{n}bigg), k=0,1,…,n-1 $$

Так как степень $ n = 3 $, то по формуле $ k = 0,1,2 $:

$$ z_0 = sqrt[3]{1} (cos frac{pi}{3}+isin frac{pi}{3}) = frac{1}{2}+ifrac{sqrt{3}}{2} $$

$$ z_1 = sqrt[3]{1} (cos frac{3pi}{3}+isin frac{3pi}{3}) = -1 $$

$$ z_2 = sqrt[3]{1} (cos frac{5pi}{3}+isin frac{5pi}{3}) = frac{1}{2} — ifrac{sqrt{3}}{2} $$

Ответ

$$ z_0 = frac{1}{2}+ifrac{sqrt{3}}{2} $$

$$ z_1 = -1 $$

$$ z_2 = frac{1}{2} — ifrac{sqrt{3}}{2} $$

Пример 6
Решить квадратное уравнение $ x^2 + 2x + 2 = 0 $ над $ mathbb{C} $
Решение

Решать будем по общей формуле, которую все выучили в 8 классе. Находим дискриминант $$ D = b^2 — 4ac = 2^2 — 4cdot 1 cdot 2 = 4-8 = -4 $$

Получили, что $ D=-4<0 $ и казалось бы, что решение можно заканчивать. Но нет! В нашем задании требуется решить уравнение над комплексным множеством, а то что дискриминант отрицательный означает только лишь отсутствие вещественных корней. А комплексные корни есть! Найдем их продолжив решение:

$$ x_{1,2} = frac{-bpm sqrt{D}}{2a} = frac{-2pm sqrt{-4}}{2} = $$

Заметим, что $ sqrt{-4} = 2sqrt{-1} = 2i $ и продолжим вычисление:

$$ = frac{-2 pm 2i}{2} = -1 pm i $$

Получили комплексно-сопряженные корни:

$$ x_1 = -1 — i; x_2 = -1 — i $$

Как видите любой многочлен можно решить благодаря комплексным числам.

Ответ
$$ x_1 = -1 — i; x_2 = -1 — i $$

В статье «Комплексные числа: примеры с решением» было дано определение, основные понятия, формы записи, алгебраические операции и решение практических примеров.

Операции над комплексными числами

Время на прочтение
2 мин

Количество просмотров 8.4K

Здравствуй, %username%!
Я получил довольно много отзывов о первой части и постарался все их учесть.
В первой части я писал о сложении, вычитании, умножении и делении комплексных чисел.
Если не знаешь это — скорей беги читать первую часть :-)
Статья оформлена в виде шпарлагки, истории здесь крайне мало, в основном формулы.
Приятного чтения!

Итак, перейдем к более интересным и чуть более сложным операциям.
Я расскажу про показательную форму комлексного числа,
возведение в степень, квадратный корень, модуль, а также про синус и
косинус комплексного аргумента.
Думаю, начать стоит с модуля комплексного числа.
Комплексное число можно представить на оси координат.
По x будут расположены вещественные числа, а по y мнимые.
Это называется комплексная плоскость. Любое комплексное число, например

$z=6+8i$

очевидно можно представить как радиус-вектор:

Формула расчета модуля будет выглядить так:

$ r = |z| = sqrt(x^2+y^2) $

Получается, что модуль комплексного числа z будет равен 10.
В прошлой части я рассказал про две формы записи комплексного числа:
алгебраическую и геометрическую. Есть еще показательная форма записи:

$z=r:e^{iphi}$

Здесь r — это модуль комплексного числа,
а φ — это arctg(y/x), если x>0
Если x<0,y>0 то

$φ=arctg(y/x)+pi$

Если x<0,y<0 то

$φ=arctg(y/x)-pi$

Есть замечательная формула Муавра, которая позволяет возвести комплексное число в
целую степень. Она была открыта французким математиком Абрахом де Муавром в 1707 году.
Выглядит она вот так:

$z^n=r^n{(cos(phi) + i*sin(phi))}^n$

В результате можем возвести число z в степень a:

$z.x=|z|^a*cos(a*arctg(y/x))$

$z.y=|z|^a*sin(a*arctg(y/x))$

Если Ваше комплексное число записано в показательном виде, то
можно использовать формулу:

$z^k=r^ke^{ikphi}$

Теперь, зная как находится модуль комплексного числа и формулу Муавра, можем найти
n корень из комплексного числа:

$sqrt[n]{z}=sqrt[n]{r};cos{frac{phi+2pi k}{n}}+i*sin{frac{phi+2pi k}{n}}$

Здесь k это числа от 0 до n-1
Из этого можно сделать вывод, что существует ровно n различных корней n-ой
степени из комплексного числа.
Перейдем к синусу и косинусу.
Расчитать их нам поможет знаменитая формула Эйлера:

$e^{ix}=cos({x})+i*sin({x})$

Кстати, еще существует тождество Эйлера, которое является частным
случаем формулы Эйлера при x=π:

$e^{iπ}+1=0$

Получаем формулы для вычисления синуса и косинуса:

$sin:z=frac{e^{ix}-e^{-ix}}{{2i}}$

$cos:z=frac{e^{ix}+e^{-ix}}{{2}}$

Под конец статьи нельзя не упомянуть практическое применение комплексных
чисел, чтобы не возникало вопроса
image
сдались эти комплексные числа?
Ответ: в некоторых областях науки без них никак.
В физике в квантовой механике есть такое понятие как волновая функция, которая сама по себе комплекснозначна.
В электротехнике комплексные числа нашли себя в качестве удобной замены дифурам, которые неизбежно возникают при решении задач с линейными цепями переменного тока.
В теореме Жуковского (подъемная сила крыла) тоже используются комплексные числа.
А еще в биологии, медицине, экономике и еще много где.
Надеюсь, теперь вы умеете оперировать комплексными числами и сможете
применять их на практике.
Если что-то в статье непонятно — пишите в комментариях, отвечу.

Модулем комплексного числа z=x+iyz = x+iy называется вещественное число, равное
∣z∣=x2+y2.|z| = sqrt{x^2+y^2}.

Модуль всегда определен (другими словами, модуль есть у любого комплексного числа): в самом деле, какими бы ни были xx и yy, сумма квадратов x2+y2x^2+y^2 есть число неотрицательное, а значит, из него можно извлечь квадратный корень, и он тоже будет неотрицательным числом. Модуль равен нулю в единственном случае: если z=0z=0, то есть x=y=0x=y=0. Если же хотя бы одна из координат x,yx, y отлична от нуля, ее квадрат будет строго положительным, и, следовательно, значение выражения x2+y2sqrt{x^2+y^2} также будет строго положительным. Итак, модуль любого ненулевого числа есть строго положительное число.

Мы знаем, что любое вещественное число можно представить как комплексное число с нулевой мнимой частью:

x=x+0⋅i.x = x + 0 cdot i.

Для такого числа формула модуля дает следующий результат:

∣z∣=x2+02=x2=∣x∣.|z| = sqrt{x^2+0^2} = sqrt{x^2} = |x|.

Таким образом, для вещественных чисел новое (комплексное) определение модуля совпадает со старым. Так и должно быть, если мы расширяем известное понятие.

Говорят, что понятие модуля комплексного числа обобщает понятие модуля вещественного числа.

Как найти модуль комплексного числа

Модуль числа выражает расстояние от этого числа до нуля. В самом деле, на плоскости расстояние между точками с координатами (x,y)(x,y) и (x1,y1)(x_1,y_1) вычисляется по формуле

d=(x−x1)2+(y−y1)2.d = sqrt{(x-x_1)^2+(y-y_1)^2}.

Если в этой формуле положить x1=y1=0x_1=y_1=0, то есть в качестве второй точки взять начало координат, то мы получим

d=x2+y2.d = sqrt{x^2+y^2}.

Эта формула выражает расстояние до начала координат от точки (x,y)(x,y), и это расстояние в точности равно модулю комплексного числа x+yi.x+yi.

Для примера на следующем рисунке изображено комплексное число 4+3i,4+3i, модуль которого равен 42+32=25=5sqrt{4^2+3^2} = sqrt{25} = 5. Отрезок длины 55, соединяющий начало координат с точкой (4,3)(4,3), служит гипотенузой прямоугольного треугольника с катетами 44 и 33.

Модуль.png

Все комплексные числа, модуль которых равен определенному положительному числу rr, образуют окружность радиуса rr с центром в нуле. На следующем рисунке изображена окружность радиуса 11, на которой лежат все комплексные числа единичного модуля (среди них числа 1,1, −1,-1, ii и −i-i).

Модуль2.png

Пример решения задачи

Найти модули комплексных чисел 6+8i, 8−6i, −15, 4i,32+12i.6+8i, 8-6i, -15, 4i, frac{sqrt{3}}{2}+frac{1}{2}i.

Решение

∣6+8i∣=62+82=100=10.|6+8i| = sqrt{6^2+8^2} = sqrt{100} = 10.

∣8−6i∣=82+(−6)2=100=10.|8-6i| = sqrt{8^2+(-6)^2} = sqrt{100} = 10.

∣−15∣=∣−15+0⋅i∣=(−15)2+02=152=15.|-15| = |-15+0 cdot i| = sqrt{(-15)^2+0^2} = sqrt{15^2} = 15.

∣4i∣=∣0+4i∣=02+42=42=4.|4i| = |0+4i| = sqrt{0^2+4^2} = sqrt{4^2} = 4.

∣32+12i∣=(32)2+(12)2=34+14=1=1.|frac{sqrt{3}}{2}+frac{1}{2}i| = sqrt{left(frac{sqrt{3}}{2}right)^2 + left(frac{1}{2}right)^2} = sqrt{frac{3}{4} + frac{1}{4}} = sqrt{1} = 1.

Тест на тему “Модуль комплексного числа”

Что такое комплексное число

Комплексное число — это выражение типа (z;=;a;+;ib). Здесь a и b будут являться любыми действительными числами, а i — специальным числом, называемым мнимой единицей. Действительная часть комплексного числа обозначается как (a;=;RE;z ), а мнимая часть — (b;=;Im;z).

Во множестве комплексных чисел содержится множество вещественных чисел. Если множество комплексных чисел — это всевозможные пары (x, y), то содержащееся в нем множество вещественных чисел — это пары (x, 0). Те же комплексные числа, которые задают пары (0, y) являются мнимыми.

Что такое модуль комплексного числа

Модуль комплексного числа — это длина вектора, который изображает комплексное число.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Любое комплексное число кроме 0 может быть выражено в тригонометрической форме.

(z;=;left|zright|;cdot;(cosleft(varphiright);+;isinleft(varphiright)))

В этом виде (left|zright|) — модуль комплексного числа z. Может обозначаться как p и r. 

Если (left|zright|;=;r,) то r будет обозначать длину радиус-вектора точки M (x, y).

Вычисление модуля комплексного числа, если в алгебраической форме оно выглядит как z = x + iy, возможно по следующей формуле:

(left|zright|;=;sqrt{x^2;+;y^2})

То есть модуль комплексного числа можно вычислить как квадратный корень из суммы квадратов действительной и мнимой его частей.

Модуль комплексного числа имеет следующие свойства:

  1. Модуль не отрицателен — (left|xright|;geq;0). (left|xright|;=;0) только в том случае, если z = 0.
  2. Модуль суммы двух комплексных чисел будет меньше или равен сумме модулей: (left|z_1;+;z_2right|;leq;left|z_1right|;+;left|z_2right|.)
  3. Модуль результата умножения двух комплексных числе будет равен произведению модулей: (left|z_1;cdot;z_2right|;=;left|z_1right|;cdot;left|z_2right|.)
  4. Модуль результата деления двух комплексных чисел будет равняться частному модулей: (left|z_1;div;z_2right|;=;left|z_1right|;div;left|z_2right|.)
  5. Модуль неравенства комплексных чисел будет равен расстоянию между этими числами на комплексной плоскости: (left|z_1;-;z_2right|;=;sqrt{left(x_1;-;x_2right)^2;+;left(y_1;-;y_2right)^2}).

Что такое аргумент комплексного числа

Аргумент комплексного числа — это угол (varphi) радиус-вектора точки, соответствующей комплексному числу (z;:;varphi;=;arg;z) на комплексной плоскости. Этот угол измеряется в радианах.

Каждое комплексное число, которое не равно нулю, имеет бесконечное множество аргументов. Эти аргументы отличаются друг от друга на целое число полный оборотов — (360^circ;cdot;k) при k — любое число.

Связь аргумента комплексного числа с его координатами отражена в следующих формулах:

(tanleft(varphiright);=;frac ba)

(cosleft(varphiright);=;frac a{sqrt{a^2;+;b^2}})

(sinleft(varphiright);=;frac b{sqrt{a^2;+;b^2}})

Важно помнить, что ни одна из этих формул отдельно недостаточна для того, чтобы найти аргументы. Формулы используются в совокупности, а также учитывается номер четвертый на координатной плоскости, в которой находится комплексное число.

Аргумент может быть записан в тригонометрической форме. Для комплексного числа (z = x + iy), это будет выглядеть следующим образом:

(z;=;r;(cosleft(varphiright);+;i;sinleft(varphiright)))

Здесь (r) будет модулем комплексного числа (z), а (varphi) — arg z.

Важно отметить, arg z имеет смысл лишь при (z neq 0), комплексное число ноль не имеет аргумента.

Как вывести формулу модуля

В соответствии с теоремой Пифагора длина вектора с координатами a и b равна (sqrt{a^2;+;b^2}).

Так как именно эта величина называется модулем комплексного числа (z = a + bi), тогда (left|xright|;=;sqrt{a^2;+;b^2}).

Примеры решения задач

Задача 

Найти модуль числа (z;=;-5;+;15i)

Решение

(x;=;Re;z;=;-15) — действительная часть, а (y;=;Im;z;=;15) — мнимая часть комплексного числа (z;=;-5;+;15i.)

Таким образом, модуль числа равен следующему выражению:

(r;=;sqrt{x^2;+;y^2};=sqrt{{(-5)}^2;+;15^2};=;sqrt{25;+;225};=;sqrt{250} )

Ответ: (r;=;sqrt{250})

Задача

Найти расстояние между числами (z_1;=;1;-;3i,;z_2;=;-2;+;2i) на комплексной плоскости.

Решение

Расстояние между двумя комплексными числами находятся как модуль разности комплексных чисел. Используем необходимую формулу:

(left|z_1;-;z_2right|;=;sqrt{{(x_1;-;x_2)}^2;+;left(y_1;-;y_2right)^2};=;sqrt{(1;-;{(-2))}^2;+;{(-2;-;2)}^2};=;sqrt{34})

Ответ: (sqrt{34})

Задача

Найти значение аргумента комплексного числа (sqrt{34}) и выразить его в тригонометрической форме.

Решение

Если действительно частью комплексного числа (z;=;1;+;sqrt{3i}) является число (x = Re z = 1), а мнимой частью является (y = Im z;=sqrt3), то аргумент можно вычислить по формуле:

(varphi;=;arg;z;=;arctg;frac yx;=;arctg;frac{sqrt3}1;=;arctg;sqrt3;=;frac{mathrmpi}3)

Теперь для нахождения тригонометрической формы записи комплексного числа необходимо найти модуль. 

(r;=;sqrt{x^2;+;y^2};=;sqrt{1^2;+;{(sqrt3)}^2};=;sqrt{1+3};=;sqrt4;=;2)

Исходя из этого, тригонометрическая форма комплексного числа выглядит следующим образом:

(z;=;2;(cosleft(frac{mathrmpi}3right);+;i;sinleft(frac{mathrmpi}3right)))

Ответ: аргумент равен (frac{mathrmpi}3). Тригонометрическая форма записана выше.

Задача

Найти модуль и аргумент числа (z = 2 — i)

Решение

Найдем (left|zright|;=;sqrt{2^2;+;{(-;1)}^2};=;sqrt5.)

Так как (Re z = 2 > 0), (Im z = -1 < 0), точка расположена в 4 четверти. Тогда из равенства (tanleft(varphiright);=;-frac12) следует:

(varphi;=;arctanleft(-frac12right))

Ответ: (varphi;=;arctanleft(-frac12right))

Комплексные числа в тригонометрической
и показательной формах

Тригонометрическая форма комплексного числа

Каждому комплексному числу z=x+iy геометрически соответствует точка M(x,y) на плоскости Oxy. Но положение точки на плоскости, кроме декартовых координат (x,y), можно зафиксировать другой парой — ее полярных координат (r,varphi) в полярной системе (рис. 1.3,a).

Величина r является неотрицательной и для данной точки определяется единственным образом, а угол varphi может принимать бесчисленное множество значений (при этом zne0): если точке соответствует некоторое значение varphi_0, то ей также соответствуют значения varphi=varphi_0+2kpi,~ k=0,pm1,pm2,ldots. Например, если для точки z=-1-i (см. рис. 1.1) выбрать varphi_0=frac{5pi}{4}, то ей соответствует любое varphi=frac{5pi}{4}+2kpi,~ k=0,pm1,ldots, в частности varphi=-frac{3pi}{4} при k=-1. Если же выбрать varphi_0=-frac{3pi}{4}, то varphi=-frac{3pi}{4}+2kpi,~ k=0,pm1,ldots, а при k=1 получаем varphi=frac{5pi}{4}.

Положение точки на плоскости в полярных координатах

Используя связь декартовых и полярных координат точки Mcolon begin{cases} x=rcosvarphi,\ y=rsinvarphiend{cases} (рис. 1.3,б), из алгебраической формы записи комплексного числа z=x+iy получаем тригонометрическую форму:

z=r bigl(cosvarphi+isinvarphibigr).

(1.3)


Показательная форма комплексного числа

Если обозначить комплексное число z, у которого operatorname{Re}z= cosvarphi, а operatorname{Im}z=sinvarphi, через e^{i,varphi}, то есть cosvarphi+isinvarphi=e^{i,varphi}, то из (1.3) получим показательную форму записи комплексного числа:

z=r,e^{i,varphi}.

(1.4)

Равенство e^{i,varphi}= cosvarphi+isinvarphi называется формулой Эйлера.

Заметим, что геометрически задание комплексного числа z=(r,varphi) равносильно заданию вектора overrightarrow{OM}, длина которого равна r, то есть bigl|overrightarrow{OM}bigr|=r, а направление — под углом varphi к оси Ox (рис. 1.3,б).


Модуль комплексного числа

Число r — длина радиуса-вектора точки M(x,y) называется модулем комплексного числа z=x+iy. Обозначение: |z|=r.

Из рис. 1.3,б получаем формулу для нахождения модуля числа, заданного и алгебраической форме z=x+iycolon

|z|=sqrt{x^2+y^2},.

(1.5)

Геометрический смысл модуля комплексного числа

Очевидно, что |z|geqslant0 и |z|=0 только для числа z=0~(x=0,,y=0).

С помощью правила вычитания запишем модуль числа z=z_1-z_2, где z_1=x_1+iy_1 и z_2=x_2+iy_2,colon

bigl|z_1-z_2bigr|= sqrt{(x_1-x_2)^2+(y_1-y_2)^2},.

А это, как известно, есть формула для расстояния между точками M_1(x_1,y_1) и M_2(x_2,y_2).

Таким образом, число |z_1-z_2| есть расстояние между точками z_1 и z_2 на комплексной плоскости.

Пример 1.13. Найти модули комплексных чисел:

bold{1)}~z_1=2,~z_2=-2+sqrt{3},;qquad bold{2)}~z_3=-2i,~ z_4=(2-sqrt{3})i,;qquad bold{3)}~ z_5=-1+2i,.

Решение


Аргумент комплексного числа

Полярный угол varphi точки M(x,y) называется аргументом комплексного числа z=x+iy. Обозначение: varphi=arg z.

В дальнейшем, если нет специальных оговорок, под arg z будем понимать значение varphi, удовлетворяющее условию -pi&lt;varphileqslantpi. Так, для точки z=-1-i (см. рис. 1.1) arg z=-frac{3pi}{4}.

Формулу для нахождения аргумента комплексного числа z=x+iy, заданного в алгебраической форме, получаем, используя связь декартовых и полярных координат точки M(x,y) (см. рис. 1.3,б). Для точек, не лежащих на мнимой оси, т.е. для z, у которых xne0, получаем operatorname{tg}varphi= frac{y}{x}; для точек мнимой положительной полуоси, т.е. для z, у которых x=0,~ y&gt;0, имеем varphi=frac{pi}{2}; для точек мнимой отрицательной полуоси, т.е. для z, у которых x=0,~ y&lt;0, соответственно varphi=-frac{pi}{2}.

Аргумент числа z=0 — величина неопределенная.

Нахождение аргумента при xne0 сводится к решению тригонометрического уравнения operatorname{tg}varphi= frac{y}{x}. При y=0, т.е. когда z=x — число действительное, имеем varphi=0 при x&gt;0 и varphi=pi при x&lt;0. При yne0 решение уравнения зависит от четверти плоскости Oxy. Четверть, в которое расположена точка z, определяется по знакам operatorname{Re}z и operatorname{Im}z. В результате получаем:

Аргумент комплексного числа

arg z= begin{cases}operatorname{arctg}dfrac{y}{x},& x&gt;0;\ pi+operatorname{arctg}dfrac{y}{x},& x&lt;0,ygeqslant0;\ -pi+operatorname{arctg}dfrac{y}{x},& x&lt;0,y&lt;0;\ dfrac{pi}{2},& x=0,~y&gt;0;\ -dfrac{pi}{2},& x=0,~y&lt;0.end{cases}

(1.6)

При решении примеров удобно пользоваться схемой, которая изображена на рис. 1.5.

Пример 1.14. Найти аргументы чисел из примера 1.13.

Решение

Пример 1.15. Найти модуль и аргумент числа z=2-i.

Решение. Находим |z|=sqrt{2^2+(-1)^2}= sqrt{5}. Так как operatorname{Re}z=2&gt;0,~ operatorname{Im}z=-1&lt;0, т.е. точка расположена в четвертой четверти, то из равенства operatorname{tg}varphi=-frac{1}{2} получаем varphi= operatorname{arctg}!left(-frac{1}{2}right) (рис. 1.5).


Главное значение аргумента комплексного числа

Аргумент комплексного числа определяется неоднозначно. Это следует из неоднозначности задания величины угла varphi для данной точки, а также из тригонометрической формы записи комплексного числа и свойства периодичности функций sinvarphi и cosvarphi.

Всякий угол, отличающийся от arg z на слагаемое, кратное 2pi, обозначается operatorname{Arg}z и записывается равенством:

operatorname{Arg}z=arg z+2kpi,quad k=0,pm1,pm2,ldots,

(1.7)

где arg z — главное значение аргумента, -pi&lt;arg zleqslantpi.

Комплексные числа с нулевыми вещественными и мнимыми частями

Пример 1.16. Записать arg z и operatorname{Arg}z для чисел z_1=1,~ z_2=-1,~ z_3=i,~ z_4=-i.

Решение. Числа z_1 и z_2 — действительные, расположены на действительной оси (рис. 1.6), поэтому

arg z_1=0,~~ operatorname{Arg}z_1=2kpi;qquad arg z_2=pi,~~ operatorname{Arg}z_2= pi+2kpi,quad k=0,pm1,pm2,ldots;

числа z_3 и z_4 — чисто мнимые, расположены на мнимой оси (рис. 1.6), поэтому

arg z_3=frac{pi}{2},~~ operatorname{Arg}z_3=frac{pi}{2}+2kpi;qquad arg z_4=-frac{pi}{2},~~ operatorname{Arg}z_4= -frac{pi}{2}+2kpi,quad k=0,pm1, pm2,ldots

Пример 1.17. Записать комплексные числа из примера 1.16:

а) в тригонометрической форме;

б) в показательной форме.

Решение

Модули всех чисел, очевидно, равны 1. Поэтому, используя решение предыдущего примера и формулы (1.3) и (1.4), получаем:

а) 1=cos2kpi+ isin2kpi;~~ -1=cos(pi+2kpi)+ isin(pi+2kpi);~~ k=0,pm1,pm2,ldots

i=cos!left(frac{pi}{2}+2kpiright)+ isin!left(frac{pi}{2}+2kpiright);quad -i=cos!left(-frac{pi}{2}+2kpiright)+ isin!left(-frac{pi}{2}+2kpiright);

б) 1=e^{2kpi i};~~ -1=e^{(pi+2kpi)i};~~ i=e^{left(frac{pi}{2}+2kpiright)i};~~ -i=e^{left(-frac{pi}{2}+2kpiright)i},~~ k=0,pm1,pm2,ldots.

Пример 1.18. Записать в тригонометрической форме числа z_1=-1-i,~ z_2=cosfrac{pi}{5}-isinfrac{pi}{5},~ z_3= ileft(cosfrac{pi}{5}-isinfrac{pi}{5}right).

Решение

Числа z_1 и z_2 записаны в алгебраической форме (заметим, что заданная запись числа z_2 не является тригонометрической формой записи (сравните с (1.3)). Находим модули чисел по формуле (1.5):

|z_1|= sqrt{(-1)^2+(-1)^2}= sqrt{2},,qquad |z_2|=sqrt{cos^2 frac{pi}{5}+ left(-sin frac{pi}{5}right)^2}=1.

Далее находим аргументы. Для числа z_1 имеем operatorname{tg}varphi=1 и, так как operatorname{Re}z_1&lt;0,~ operatorname{Im}z_1&lt;0 (точка расположена в третьей четверти), получаем arg z_1=-pi+frac{pi}{4}=-frac{3pi}{4} (см. рис. 1.5). Для числа z_2 имеем operatorname{tg}varphi=-operatorname{tg}frac{pi}{5}, или operatorname{tg}varphi= operatorname{tg}left(-frac{pi}{5}right), и, так как operatorname{Re}z_2&gt;0,~ operatorname{Im}z_2&lt;0 (точка расположена в четвертой четверти (см. рис. 1.5)), получаем arg z_2=-frac{pi}{5}.

Записываем числа z_1 и z_2 в тригонометрической форме

begin{gathered}z_1= sqrt{2} left[cosleft(-frac{3pi}{4}+2kpiright)+ isinleft(-frac{3pi}{4}+2kpiright)right];\[5pt] z_2= cosleft(-frac{pi}{5}+2kpiright)+ isinleft(-frac{pi}{5}+ 2kpiright)!,quad k=0,pm1,pm2,ldots end{gathered}

Заметим, что для числа z_2 решение можно найти иначе, а именно используя свойства тригонометрических функций: cosalpha=cos(-alpha),~ -sinalpha=sin(-alpha).

Число z_3 является произведением двух чисел. Выполнив умножение, получим алгебраическую форму записи (найдем operatorname{Re}z_3 и operatorname{Im}z_3): z_3=sin frac{pi}{5}+ icos frac{pi}{5}. Здесь, как и для числа z_2, при решении удобно использовать преобразования тригонометрических выражений, а именно sinfrac{pi}{5}= cos!left(frac{pi}{2}-frac{pi}{5}right)!,~ cosfrac{pi}{5}= sin!left(frac{pi}{2}-frac{pi}{5}right).

Рассуждая, как выше, найдем |z_3|=1,~ arg z_3=frac{pi}{2}-frac{pi}{5}= frac{3pi}{10}. Для числа z_3=sin frac{pi}{5}+ icos frac{pi}{5}, записанного в алгебраической форме, получаем тригонометрическую форму:

z_3= cos!left(frac{3pi}{10}+2kpiright)+ isin!left(frac{3pi}{10}+2kpiright)!,quad k=0,pm1,pm2,ldots


Равенство комплексных чисел в тригонометрической форме

Условия равенства комплексных чисел получаем, используя геометрический смысл модуля и аргумента комплексного числа, заданного в тригонометрической форме. Так, для чисел z_1=r_1(cosvarphi_1+ isinvarphi_1), z_2=r_2(cosvarphi_2+ isinvarphi_2), из условия z_1=z_2. очевидно, следует:

r_1=r_2;qquad varphi_1-varphi_2=2kpi,quad k=0,pm1,pm2,ldots

или

|z_1|=|z_2|,quad operatorname{Arg}z_1-operatorname{Arg}z_2= 2kpi,quad k=0,pm1,pm2,ldots

(1.8)

Аргументы равных комплексных чисел либо равны (в частности равны главные значения), либо отличаются на слагаемое, кратное 2pi.

Для пары сопряженных комплексных чисел z и overline{z} справедливы следующие равенства:

|overline{z}|= |z|,qquad argoverline{z}=-arg z,.

(1.9)


Умножение комплексных чисел в тригонометрической форме

Зададим два комплексных числа в тригонометрической форме z_1=r_1(cosvarphi_1+ isinvarphi_1) и z_2=r_2(cosvarphi_2+isinvarphi_2) и перемножим их по правилу умножения двучленов:

begin{aligned}z_1cdot z_2&= r_1cdot r_2cdot (cosvarphi_1+ isinvarphi_1)cdot (cosvarphi_2+isinvarphi_2)=\ &= r_1cdot r_2 bigl(cosvarphi_1cosvarphi_2- sinvarphi_1 sinvarphi_2+ i(cosvarphi_1 sinvarphi_2+ sinvarphi_1 cosvarphi_2)bigr) end{aligned}

или

z_1cdot z_2= r_1cdot r_2cdot bigl(cos(varphi_1+varphi_2)+ isin(varphi_1+ varphi_2)bigr).

Получили новое число z, записанное в тригонометрической форме: z=r(cosvarphi+ isinvarphi), для которого r=r_1cdot r_2,~ varphi= varphi_1+ varphi_2.

Правило умножения. При умножении комплексных чисел, заданных в тригонометрической форме, их модули перемножаются, а аргументы складываются:

|z_1cdot z_2|= |z_1|cdot |z_2|,qquad operatorname{Arg}(z_1cdot z_2)= arg z_1+arg z_2.

(1.10)

В результате умножения чисел может получиться аргумент произведения, не являющийся главным значением.

Пример 1.19. Найти модули и аргументы чисел:

bold{1)}~ z=-2i left(cosfrac{4pi}{7}- isinfrac{4pi}{7}right)!;qquad bold{2)}~ z=(1+i)(sqrt{3}-i).

Решение

Каждое из заданных чисел записано в виде произведения. Найдем модули и аргументы сомножителей и воспользуемся правилом (1.10) умножения чисел, заданных в тригонометрической форме:

bold{1)}quad z=z_1cdot z_2,quad z_1=-2i,quad z_2= cosfrac{4pi}{7}- isinfrac{4pi}{7}= cos!left(-frac{4pi}{7}right)+ isin!left(-frac{4pi}{7}right),.

Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=2,~ arg z_1=-frac{pi}{2};~ |z_2|=1,~ arg z_2=-frac{4pi}{7}. Используя формулы (1.10), получаем

|z|=|z_1|cdot|z_2|=2,quad operatorname{Arg}z= arg z_1+arg z_2= -frac{pi}{2}-frac{4pi}{7};quad arg z= 2pi- frac{15pi}{14}= frac{13pi}{14}

б) z=z_1cdot z_2,~ z_1=1+i,~ z_2=sqrt{3}-i. Для числа z_1 имеем: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; для числа z_2colon, |z_2|=2,~ operatorname{tg}varphi_2=-frac{1}{sqrt{3}}, и так как operatorname{Re}z_2&gt;0,~ operatorname{Im}z_2&lt;0 (точка расположена в четвертой четверти), то arg z_2=-frac{pi}{6}. Используя формулы (1.10), получаем |z|=2sqrt{2},~ arg z=frac{pi}{4}-frac{pi}{6}=frac{pi}{12}.

Заметим, что для решения этой задачи можно раскрыть скобки, записать каждое число в алгебраической форме, а затем найти |z| и arg z, используя формулы (1.5), (1.6).


Деление комплексных чисел в тригонометрической форме

Рассмотрим частное комплексных чисел frac{z_1}{z_2}, заданных в тригонометрической форме. Из определения частного z=frac{z_1}{z_2} имеем z_1=zcdot z_2 и, применяя к произведению правило умножения (формулы (1.10)), получаем r=frac{r_1}{r_2},~ varphi=varphi_1-varphi_2.

Правило деления. Модуль частного, полученного в результате деления чисел, заданных в тригонометрической форме, равен частному от деления модуля числителя на модуль знаменателя, а аргумент частного равен разности аргументов делимого и делителя:

left|frac{z_1}{z_2}right|= frac{|z_1|}{|z_2|},qquad operatorname{Arg}frac{z_1}{z_2}= arg z_1-arg z_2.

(1.11)

В результате деления чисел по формуле (1.11) может получиться аргумент честного, не являющийся главным значением.

Пример 1.20. Записать в тригонометрической форме комплексное число frac{1+i}{sqrt{3}-i}.

Решение. Обозначим z=frac{z_1}{z_2},~ z_1=1+i,~ z_2=sqrt{3}-i. Для чисел z_1 и z_2 находим модули и аргументы: |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}; |z_2|=2,~ arg z_2=-frac{pi}{6} (см. пример 1.19). По формуле (1.11) получаем |z|=frac{|z_1|}{|z_2|}=frac{sqrt{2}}{2},~ arg z=arg z_1-arg z_2=frac{pi}{4}-left(-frac{pi}{6}right)= frac{5pi}{12} и

frac{1+i}{sqrt{3}-i}= frac{sqrt{2}}{2}left(cosleft(frac{5pi}{12}+2kpiright)+ isinleft(frac{5pi}{12}+2kpiright)right)!,~ k=0,pm1,pm2,ldots


Возведение в степень комплексного числа в тригонометрической форме

Из определения степени z^n и правила умножения чисел, записанных в тригонометрической форме (формула (1.10)), получаем

|z^n|=r^n,quad operatorname{Arg}z^n=nvarphi, где z=r(cosvarphi+ isinvarphi).

Правило возведения в степень. При возведении в степень комплексного числа в эту степень возводится модуль числа, а аргумент умножается на показатель степени:

|z^n|= |z|^n,qquad operatorname{Arg}z^n= narg z,.

(1.12)

Записывая число z^n в тригонометрической форме z^n= r^n(cos nvarphi+ isin nvarphi), получаем формулу возведения в степень:

bigl[r(cosvarphi+ isinvarphi)bigr]^n= r^n(cos nvarphi+ isin nvarphi).

(1.13)

При r=1 это равенство принимает вид и называется формула Муавра

(cosvarphi+ isinvarphi)^n= cos nvarphi+ isin nvarphi,.

(1.14)

Пример 1.21. Найти модуль и аргумент комплексного числа (1+i)^5.

Решение. Обозначим z=z_1^5,~ z_1=1+i. Находим модуль и аргумент числа z_1colon, |z_1|=sqrt{2},~ arg z_1=frac{pi}{4}. Поэтому |z|= (sqrt{2})^5 и operatorname{Arg}z=5arg z_1=frac{5pi}{4}. Так как по определению для главного значения аргумента выполняется условие -pi&lt;arg zleqslantpi, то arg z= frac{5pi}{4}-2pi=-frac{3pi}{4}.

Пример 1.22. Записать в тригонометрической форме число (1+i)^5(sqrt{3}-i)^7.

Решение

Пример 1.23. Используя формулу Муавра, найти выражения для cos3varphi и sin3varphi через тригонометрические функции угла varphi.

Решение

Из формулы (1.14) при n=3 имеем (cosvarphi+ isinvarphi)^3= cos3varphi+isin3varphi. Возведем левую часть в степень, учитывая, что i^3=-i (см. пример 1.8):

begin{aligned}cos^3varphi+ i3cos^2varphisinvarphi- 3cosvarphi sin^2varphi+ i^3sin^3varphi&= cos3varphi+ isin3varphi,\ (cos^3varphi-3cosvarphisin^2varphi)+ i(3cos^2varphisinvarphi-sin^3varphi)&= cos3varphi+ isin3varphi.end{aligned}

Используя условие равенства комплексных чисел, получаем:

cos3varphi= cos^3varphi- 3cosvarphisin^2varphi,qquad sin3varphi= 3cos^2varphi sinvarphi- sin^3varphi.


Извлечение корня из комплексного числа в тригонометрической форме

Рассмотрим задачу извлечения корня из комплексного числа, заданного в показательной или тригонометрической форме z=r,e^{ivarphi}, или z=r(cosvarphi+ isinvarphi). Искомое число w=sqrt[LARGE{n}]{z} также запишем в показательной форме: w=rho,e^{ivarphi},~ rho=|w|,~ theta=arg w. Используя определение операции извлечения корня z=w^n и условия (1.8), получаем соотношения

rho^n=r,qquad ncdottheta= varphi+2kpi,quad k=0,pm1,pm2,ldots

или

rho= sqrt[LARGE{n}]{r},quad theta= frac{varphi+2kpi}{n},quad k=0,pm1,pm2,ldots

(1.15)

Правило извлечения корня. Чтобы извлечь корень из комплексного числа, нужно извлечь корень (арифметический) той же степени из модуля данного числа, а аргумент (operatorname{Arg}z) разделить на показатель корня:

bigl|sqrt[LARGE{n}]{z}bigr|= sqrt[LARGE{n}]{|z|},qquad operatorname{Arg}sqrt[LARGE{n}]{z}= frac{operatorname{Arg}z}{n},.

(1.16)

Теперь можно записать число w=sqrt[LARGE{n}]{z} в показательной форме:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{|z|}cdot exp frac{i operatorname{Arg}z}{n},.

Если записать это соотношение в тригонометрической форме, то, учитывая периодичность тригонометрических функций, нетрудно убедиться, что выражение sqrt[LARGE{n}]{z} принимает только n различных значений. Для их записи достаточно в формуле (1.15) взять n последовательных значений k, например k=0,1,2,ldots,n-1. В результате получаем формулу извлечения корня из комплексного числа в тригонометрической форме, где r=|z|,~ varphi=arg z:

sqrt[LARGE{n}]{z}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right)!,quad 0,1,2,ldots,n-1.

(1.17)


Значения корня комплексного числа

Замечания 1.1

1. Рассмотренная задача извлечения корня степени n из комплексного числа равносильна решению уравнения вида z^n-a=0, где, очевидно, z=sqrt[LARGE{n}]{a}.

Для решения уравнения нужно найти n значений sqrt[LARGE{n}]{a}, а для этого необходимо найти r=|a|,~ varphi=arg a и использовать формулу извлечения корня.

2. Исследование формулы (1.17) показывает, что все комплексные числа w_k,~ k=1,2,ldots,n (значения sqrt[LARGE{n}]{z}) имеют равные модули, т.е. геометрически расположены на окружности радиуса R=sqrt[LARGE{n}]{r},~ r=|z|. Аргументы двух последовательных чисел отличаются на frac{2pi}{n}, так как arg w_{k+1}-arg w_k= frac{2pi}{n}, т.е. каждое последующее значение w_{k+1} может быть получено из предыдущего w_k поворотом радиуса-вектора точки w_k на frac{2pi}{n}.В этом заключается геометрический смысл формулы (1.17), что можно сформулировать следующим образом.

Точки, соответствующие значениям sqrt[LARGE{n}]{z}, расположены в вершинах правильного n-угольника, вписанного в окружность с центром в начале координат, радиус которой R= sqrt[LARGE{n}]{|z|}, причем аргумент одного из значений w_k равен frac{arg z}{n}= frac{varphi}{n} (рис. 1.7).


Алгоритм решения комплексных уравнений вида z^n-a=0

1. Найти модуль и аргумент числа acolon, r=|a|,~ varphi=arg a.
2. Записать формулу (1.17) при заданном значении ncolon, sqrt[LARGE{n}]{a}= sqrt[LARGE{n}]{r} left(cos frac{varphi+2kpi}{n}+ isin frac{varphi+2kpi}{n}right).
3. Выписать значения корней уравнения z_k, придавая значения k=0,1,2,ldots,n-1.

Пример 1.24. Решить уравнения: a) z^6-1=0; б) z^3-i=0.

Решение

Задача равносильна задаче нахождения всех значений корня из комплексного числа. Решаем в каждом случае по алгоритму.

а) Найдем z=sqrt[LARGE{6}]{1}.
1. Определим модуль и аргумент числа 1colon, r=1,~ varphi=0.
2. При полученных значениях r и varphi записываем формулу (1.17):

z= sqrt[LARGE{6}]{1}= sqrt[LARGE{6}]{1} left(cosfrac{2kpi}{6}+ isinfrac{2kpi}{6}right)!,qquad k=0,1,2,3,4,5.

Заметим, что справа стоит sqrt[LARGE{6}]{1} — арифметический корень, его единственное значение равно 1.

3. Придавая k последовательно значения от 0 до 5, выписываем решения уравнения:

begin{array}{ll}z_1= cos0+isin0=1,&qquad z_2=cos dfrac{pi}{3}+isindfrac{pi}{3}= dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},\[7pt] z_3= cosdfrac{2pi}{3}+ isindfrac{2pi}{3}= -dfrac{1}{2}+ i,dfrac{sqrt{3}}{2},&qquad z_4=cospi+isinpi=-1,\[10pt] z_5= cosdfrac{4pi}{3}+ isindfrac{4pi}{3}= -dfrac{1}{2}-i,dfrac{sqrt{3}}{2},&qquad z_6= cosdfrac{5pi}{3}+ isindfrac{5pi}{3}= dfrac{1}{2}-i,dfrac{sqrt{3}}{2}.end{array}

Геометрически соответствующие точки расположены в вершинах правильного шестиугольника, вписанного в окружность радиуса R=1, одна из точек (соответствует k=0) z_1=1. Строим шестиугольник (рис. 1.8,в). Отметим свойства корней этого уравнения с действительными коэффициентами — его комплексные корни являются попарно сопряженными: z_6= overline{z}_2,~ z_5= overline{z}_3,~ z_1 и z_4 — действительные числа.

б) Найдем z=sqrt[LARGE{3}]{i}.
1. Определим модуль и аргумент числа rcolon, r=|i|=1,~ varphi=arg i=frac{pi}{2}.
2. По формуле (1.17) имеем

sqrt[LARGE{3}]{i}= 1cdot left(cosfrac{frac{pi}{2}+2kpi}{3}+ isin frac{frac{pi}{2}+2kpi}{3}right)= cos!left(frac{pi}{6}+ frac{2}{3}kpiright)+ isin!left(frac{pi}{6}+ frac{2}{3}kpiright)!,quad k=0,1,2.

3. Выписываем корни z_1,,z_2,,z_3colon, z_1= frac{sqrt{3}}{2}+i frac{1}{2},~ z_2= -frac{sqrt{3}}{2}+i frac{1}{2},~ z_3=-i.

Геометрический смысл комплексных корней

Для геометрического представления решения уравнения достаточно изобразить одно значение, например z_1=cosfrac{pi}{6}+ isinfrac{pi}{6} (при k=0) — это точка окружности |z|=1, лежащая на луче varphi=frac{pi}{6}. После этого строим правильный треугольник, вписанный в окружность |z|=1 (рис. 1.8,б).

Пример 1.25. Найти корень уравнения z^4-1+i=0, для которого operatorname{Re}z&lt;0,~ operatorname{Im}z&gt;0.

Решение

Геометрическая интерпретация корней комплексного уравнения

Задача равносильна задаче нахождения z=sqrt[LARGE{4}]{1-i} при условие operatorname{Re}z&lt;0,~ operatorname{Im}z&gt;0.

1. Находим модуль и аргумент числа 1-icolon, r=|1-i|=sqrt{2},~ varphi=arg(1-i)=-frac{pi}{4}.

2. По формуле (1.17) имеем: z_{k+1}= sqrt[LARGE{4}]{1-i}= sqrt[LARGE{8}]{2}e^{left(-frac{pi}{16}+frac{2kpi}{4}right) i},~ k=0,1,2,3.

3. Для нахождения искомого решения нет необходимости выписывать все значения корня. Нужно выбрать значение k~(k=0,1,2,3), при котором выполняется условие frac{pi}{2}&lt; arg zleqslantpi (соответствующая точка — точка второй четверти). Удобно при этом использовать чертеж (рис. 1.9).

Условию поставленной задачи удовлетворяет корень z_3 (при k=2): z_3= sqrt[LARGE{8}]{2}e^{left(pi-frac{pi}{16}right)i}= sqrt[LARGE{8}]{2}e^{frac{15pi}{16},i}.

Математический форум (помощь с решением задач, обсуждение вопросов по математике).

Кнопка "Поделиться"

Если заметили ошибку, опечатку или есть предложения, напишите в комментариях.

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как мне найти службу поддержки в контакте
  • Как исправить ошибку при запуски приложения 0xc000007b
  • Как исправить ошибку в уставе организации
  • Как исправить сифон в раковине
  • Песни как парень нашел другую

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии