Что такое нод в математике как найти

Наибольшим общим делителем (НОД) двух целых чисел называется наибольший из их общих делителей. К примеру для чисел 12 и 8, наибольшим общим делителем будет 4.

Как найти НОД?

Способов найти НОД несколько. Мы рассмотрим один из часто используемых в математике — это нахождение НОД при помощи разложения чисел на простые множители. В общем случае алгоритм будет выглядеть следующим образом:

  1. разложить оба числа на простые множители (подробнее о разложении чисел на простые множители смотрите тут);
  2. выбрать одинаковые множители, входящие в оба разложения;
  3. найти их произведение.

Примеры нахождения наибольшего общего делителя

Рассмотрим приведенный алгоритм на конкретных примерах:

Пример 1: найти НОД 12 и 8

1. Раскладываем 12 и 8 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 2 и 2

3. Перемножаем эти множители и получаем: 2 · 2 = 4

Ответ: НОД (8; 12) = 2 · 2 = 4.

Пример 2: найти НОД 75 и 150

Этот пример, как и предыдущий с легкостью можно высчитать в уме и вывести ответ 75, но для лучшего понимания работы алгоритма, проделаем все шаги:

1. Раскладываем 75 и 150 на простые множители:

2. Выбираем одинаковые множители, которые есть в обоих разложениях. Это: 3, 5 и 5

3. Перемножаем эти множители и получаем: 3 · 5 · 5 = 75

Ответ: НОД (75; 150) = 3 · 5 · 5 = 75.

Частный случай или взаимно простые числа

Нередко встречаются ситуации, когда оба числа взаимно простые, т.е. общий делитель равен единице. В этом случае, алгоритм будет выглядеть следующим образом:

Пример 3: найти НОД 9 и 5

1. Раскладываем 5 и 9 на простые множители:

Видим, что одинаковых множителей нет, а значит, что это частный случай (взаимно простые числа). Общий делитель — единица.

Математика

5 класс

Урок № 43

Наибольший общий делитель (НОД)

Перечень рассматриваемых вопросов:

– делители числа;

– кратные числа;

– разложение на простые множители;

– НОД.

Тезаурус

Простое число – это натуральное число, которое больше 1 и делится только на 1 и само на себя.

Составные числа – это непростые натуральные числа больше 1.

Взаимно простые числа – это числа, которые не имеют общих простых делителей.

Обязательная литература:

  1. Никольский С. М. Математика. 5 класс. Учебник для общеобразовательных учреждений. ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. – М.: Просвещение, 2017. – 272 с.

Дополнительная литература:

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. – М.: Просвещение, 2009. ­– 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. – М.: Просвещение, 2014. – 95 с.

Теоретический материал для самостоятельного изучения

Начнём наше занятие словами известной поговорки: «Учить – ум точить». Сегодня мы будем оттачивать умение находить общие делители сразу нескольких чисел.

Итак, рассмотрим два числа: 12 и 15. Выпишем все делители этих чисел. 12 – делители 1, 2, 3, 4, 6, 12.

15 – делители 1, 3, 5, 15.

Найдём общие делители этих чисел – это числа 1 и 3. Введём новое понятие – «наибольший общий делитель», который кратко обозначают НОД.

У этих чисел наибольший общий делитель равен 3.

Записывается – НОД (12; 15) = 3. НОД чисел двенадцать и пятнадцать равен трём.

Правило нахождения НОД:

  1. разложим числа на простые множители;
  2. подчеркнём одинаковые множители этих чисел;
  3. перемножим общие множители одного из чисел, это и будет НОД заданных чисел.

Найдём НОД чисел 15 и 16.

НОД (15; 16) = ?

Разложим числа на простые множители.

Видно, что из всех множителей – общий лишь 1.

Такие числа, которые не имеют общих простых делителей, называются взаимно простыми числами. Любые два простых числа или два соседних натуральных числа будут взаимно простыми.

Найдём НОД (10; 100).

Разложим числа на простые множители.

Выделим общие делители у этих чисел, это 2 и 5.

Умножим их и получим наибольший общий делитель: НОД (10; 100) = 2 · 5 = 10.

Обратите внимание на то, что 100 делится нацело на 10 и НОД тоже равен 10. Поэтому можно сделать вывод: если одно из двух чисел делится нацело на другое, то НОД этих чисел равен меньшему из них.

Найдём наибольший общий делитель трёх чисел.

НОД (42; 70; 98) = ?

Разложим числа на простые множители:

Выделим общие делители у этих чисел, это 2 и 7.

Умножим их и получим наибольший общий делитель: НОД (42; 70; 98) = 2 · 7 = 14

Некоторые задачи можно решить при помощи НОД проще, чем каким-либо другим способом.

Например, решим такую задачу.

Для участия в соревнованиях нужно разделить 35 детей в возрасте 14 лет и 21 ребёнка в возрасте 12 лет на команды так, чтобы они состояли только из одновозрастных спортсменов. Какое наибольшее число участников одного возраста может быть в команде?

Решение: чтобы решить эту задачу нужно найти НОД (21; 35).

Разложим числа на простые множители:

Следовательно, НОД (21; 35) = 7 – это и будет наибольшим числом участников в команде.

Ответ: 7 человек.

Тренировочные задания

№ 1. Какую цифру нужно подставить в число НОД (7; 2_) вместо пропуска, чтобы получить НОД = 7?

Варианты ответов: 1, 2, 3.

Решение: разложим на множители оба числа, при этом вместо пропуска подставим по порядку все цифры. А далее найдём подходящий НОД этих чисел, равный 7. Получим следующее разложение:

Из всех разложений на множители под НОД (7; 2) = 7 подходит только число 21.

Ответ: искомая цифра – 1.

№ 2. В продуктовых наборах должно быть одинаковое количество груш и апельсинов. Всего приготовили 120 груш и 126 апельсинов. В какое наибольшее количество наборов можно разложить их поровну?

Решение: чтобы решить эту задачу, нужно найти НОД заданных чисел, он и будет являться искомым ответом, т. е. наибольшим количеством наборов при равном разложении фруктов.

НОД (120; 126) = 2 · 3 = 6

Ответ: 6 наборов.

Наибольший общий делитель


Наибольший общий делитель

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.

Наибольший общий делитель – это еще один показатель, позволяющий упростить работу с дробями. Очень часто в результате вычислений получаются дроби с очень большими значениями числителя и знаменателя. Сокращать поэтапно такие числа можно, но это крайне долго, поэтому проще сразу найти НОД и сократить на него. Разберемся в теме подробнее.

Что такое НОД?

Наибольший общий делитель (НОД) ряда чисел – это наибольшее число, на которое можно без остатка разделить каждое из чисел ряда.

Это значение чаще всего используется для ряда из двух чисел. Просто потому, что сокращаются обычно два числа: числитель и знаменатель дроби. Нахождение НОД для большего количества значений не всегда оправдано, но вырабатывает навык.

Как найти НОД?

Для того, чтобы найти НОД необходимо каждое из чисел разложить на простые множители и выделить общую часть.

Специальной формулы для этого не придумали, зато есть алгоритм вычисления.

Приведем пример нахождения наибольшего общего делителя двух натуральных чисел: 540 и 252. Разложим 640 на простые множители. Последовательность действий такова:

  • Делим число на наименьший из возможных простых чисел. То есть, если число можно разделить на 2, 3 или 5, то сначала нужно делить на 5. Просто, чтобы не запутаться.
  • Получившийся результат делим на наименьшее из возможных простых чисел.
  • Повторяем деление каждого полученного результата, пока не получим простое число.

Теперь проведем ту же процедуру на практике.

  • 540 : 2=270
  • 270:2=135
  • 135 : 3 =45
  • 45 : 3=15
  • 15 : 5 = 3

Запишем результат в виде равенства 540=2*2*3*3*3*5. Для того, чтобы записать результат, нужно последнее получившееся число умножить на все делители.

Аналогично поступим с числом 252:

  • 252 : 2=126
  • 126: 2=63
  • 63 : 3=21
  • 21 : 3 = 7

Запишем результат: 252=2*2*3*3*7.

В каждом разложении есть одинаковые числа. Найдем их, это два числа 2 и два числа 3. Отличаются только 7 и 3*5.

Для того, чтобы найти НОД нужно перемножить общие множетели. То есть в произведении будет две двойки и две тройки.

НОД=2*2*3*3=36

Как можно это использовать?

Задача: сократить дробь $$252over540$$.

НОД для двух этих чисел мы уже находили, теперь просто воспользуемся уже посчитанным значением.

НОД = 36

Сократим числитель и знаменатель дроби на 36 и получим ответ.

$${252over540} ={7over15}$$ – чтобы быстро сократить, достаточно посмотреть на разложение чисел.

Если 540=2*2*3*3*3*5, а НОД=36=2*2*3*3, то 540 = 36*3*5. И если мы поделим 540 на 36, то получим 3*5=15.

Без НОД нам пришлось бы в одну длинную строку писать сокращения. К тому же, бывают случаи, когда непонятно, можно ли сократить дробь вообще. Для таких ситуаций в математике и придумали разложение чисел на простые множители и НОД.

Заключение

Что мы узнали?

Мы узнали, что такое наибольший общий делитель пары чисел, разобрались, как можно использовать показатель на практике, решили задачу на нахождение НОД и применение НОД для сокращения дробей. Поняли, что с использованием НОД можно проще и быстрее сократить громоздкие дроби, найдя НОД для числителя и знаменателя.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда — пройдите тест.

    Пока никого нет. Будьте первым!

Оценка статьи

4.3

Средняя оценка: 4.3

Всего получено оценок: 224.


А какая ваша оценка?

Нахождение НОК и НОД двух натуральных чисел

Содержание:

  • Что такое НОК и НОД двух натуральных чисел
  • Особенности вычисления, алгоритм Евклида
  • Правило нахождения наибольшего общего делителя (НОД)
  • Правило нахождения наименьшего общего кратного (НОК)

Что такое НОК и НОД двух натуральных чисел

Натуральными числами называют числа, которые используются при счете – 1, 2, 3, 16, 25, 101, 2560 и далее до бесконечности. Ноль, отрицательные и дробные или нецелые числа не относятся к натуральным.

Наименьшее общее кратное (НОК) двух натуральных чисел a и b – это наименьшее число, которое делится без остатка на каждое из рассматриваемых чисел.

Наибольший общий делитель (НОД) двух натуральных чисел a и b – это наибольшее число, на которое делится без остатка каждое рассматриваемое число.

Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.

Свойства НОК и НОД для натуральных чисел a и b

  • (НОД (a, b) = НОД (b, a);)
  • (НОК (a, b) = НОК (b, a);)
  • (НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.)

Особенности вычисления, алгоритм Евклида

Рассмотрим два способа определения НОД и НОК с помощью алгоритма Евклида:

  • Способ деления.

При делении целых чисел с остатком, где a — делимое, b – делитель (b не равно 0) находят целые числа q и r согласно равенству (a=btimes) q+r, в котором q – неполное частное, r – остаток при делении (не отрицательное, по модулю меньше делителя).

Чтобы вычислить НОД, первоначально нужно выбрать наибольшее из двух чисел и поделить его на меньшее. Пока остаток не станет равным нулю, повторяется цикл деления делителя на остаток от деления в соответствии с формулой.

Пример №1

Вычислим НОД для чисел 12 и 20. Делим 20 на 12 и получаем 1 и 8 в остатке. Запишем иначе:

(20=12times1+8), так как остаток не равняется нулю, продолжаем деление. Делим 12 на 8 и получаем 1 и 4 в остатке. Записываем: (12=8times1+4) и по аналогии делим 8 на 4 и получаем 2 и 0 в остатке. НОД равен остатку, предшествующему нулю.

НОД (12;20) = 4

НОК получаем согласно свойству (НОК (a, b) = НОК;(a,b)=frac{a;times;b}{НОД;(a,b)}.) Подставляем числовые значения:

НОК (12; 20) = (12times20div4=60)

НОК (12;20) = 60

  • Способ вычитания.

Здесь повторяется цикл вычитания из наибольшего числа меньшего числа до момента, пока разность не станет равна нулю. НОД равен предшествующей нулю разности.

Пример №2

Вычислим НОД для тех же чисел, 12 и 20.

20 – 12 = 8 (разность не равна нулю, продолжаем)

12 – 8 = 4

8 – 4 = 4

4 – 4 = 0

НОД (12;20) = 4

НОК находим также, как и при методе деления.

Правило нахождения наибольшего общего делителя (НОД)

Для нахождения наибольшего общего делителя воспользуемся пошаговым алгоритмом:

  1. Разложить числа на простые множители.
  2. Найти общий множитель одного и другого числа.
  3. Перемножить общие множители, если их несколько, и их произведение будет НОД.

Пример №3

Возьмем натуральные числа 24 и 36.

(24=2times2times2times3)

(36=2times2times3times3)

Правильно записать следующим образом:

(НОД (24;36)=2times3=6)

Примечание

В случае, когда одно или оба числа относятся к простым, т.е. делятся только на единицу и на само себя, то их НОД равняется 1.

Правило нахождения наименьшего общего кратного (НОК)

Для нахождения наименьшего общего кратного воспользуемся подробным алгоритмом:

  1. Наибольшее из чисел, а затем остальные разложить на простые множители.
  2. Выделить те множители, которые отсутствуют у наибольшего.
  3. Перемножить множители п. 2 и множители наибольшего числа, получить НОК.

Пример №4

Возьмем натуральные числа 9 и 12.

(12=2times2times3)

(9=3times3) (видим, что у числа 12 отсутствует одна тройка)

Правильно записать следующим образом:

(НОК (9;12)=2times2times3times3=36)

Насколько полезной была для вас статья?

Рейтинг: 3.00 (Голосов: 4)

Выделите текст и нажмите одновременно клавиши «Ctrl» и «Enter»

Текст с ошибкой:

Расскажите, что не так

Поиск по содержимому

НОК и НОД

Рассмотрим выражение:

(45:9)

Можем сказать, что 45 – делимое, а 9 – делитель данного выражения.

Мы знаем, что 45 делится нацело на число 9. В таком случае, если мы захотим описать, чем эти числа являются друг другу, то мы скажем, что

9 – делитель числа 45

45 – кратно числу 9

Иногда при решении задач нужно находить общие кратные или общие делители двух чисел.

Наименьший делитель двух чисел – всегда единица. Такой делитель нет смысла искать, поэтому ищут наибольший общий делитель.

А кратных наоборот – бесконечно много, невозможно искать наибольшее из них, поэтому ищут, наименьшее общее кратное.

НОД:

Наибольший общий делитель (НОД) двух чисел – это наибольшее число, на которое каждое из этих чисел можно поделить без остатка.

Пример №1:

Рассмотрим числа 30 и 45.

  1. Найдем все их существующие делители, т.е. числа, на которые каждое из них поделится нацело:

  1. Мы видим, что у этих двух чисел есть несколько общих делителей. Наибольший из них – 15 – является самым большим. Это и есть НОД.

Значит и число 45 и число 30 можно нацело поделить на 15. Записывают это так:

(НОД (30;45) = 15)

Ответ: 15.

Пример №2:

Найдем (НОД (20;36):)

  1. Выпишем все делители этих чисел.

Так же делители можно сразу записывать парой. Если 20 нацело делится на 2, то

(20 : 2 = 10)

Значит 10 – тоже делитель числа 20. Запишем делители 2 и 10 парой:

  1. Выделим все общие делители и найдем наибольший из них. В данном случае

(НОД(20;35) = 4.)

Ответ: 4.

НОК:

Наименьшее общее кратное (НОК) двух чисел – это наименьшее число, которое можно поделить на каждое из этих чисел без остатка.

Пример №3:

Найдем (НОК (10;12).)

  1. Возьмем наименьшее число. В данном случае – 10.

Будем умножать его на натуральные числа по порядку, пока не получим число, кратное 12, то есть такое, на которое нацело поделится и 10, и 12. Оно и будет НОК этих двух чисел. Такой метод называется методом подбора.

(10 bullet 1 = 10; 10 НЕ кратно 12)

(10 bullet 2 = 20; 20 НЕ кратно 12)

(10 bullet 3 = 30; 30 НЕ кратно 12)

(10 bullet 4 = 40; 40 НЕ кратно 12)

(10 bullet 5 = 50; 50 НЕ кратно 12)

(10 bullet 6 = 60; 60 кратно 12)

  1. Первое число, которое будет кратно обоим числам и является их наименьшим общим кратным.

Общих кратный, в отличии от делителей, бесконечно много, поэтому обычно выбирают наименьший их них.

Ответ: 60.

Также можно находить НОК через разложение на множители:

Пример №4:

Найдём (НОК (6;8):)

  1. Разложим числа 6 и 8 на простейшие множители, т.е. представим каждое число как произведения простых чисел. Множители большего числа запишем сверху:

8: (1 bullet 2 bullet 2 bullet 2)

6: (1 bullet 2 bullet 3)

  1. Видим, что множители 1 и 2 повторяются у обоих чисел, поэтому для меньшего числа их уберем. Останется:

  1. Перемножим все оставшиеся числа. Их произведение и будет НОК:

(НОК (6; 8) = 1 bullet 2 bullet 2 bullet 2 bullet 3 = 24)

Ответ: 24.

Пример №5:

Найдем (НОК (10;12)) разложением на множители:

  1. Разложим оба числа на простые множители. Сверху запишем большее число:

12: 1, 2, 2, 3

10: 1, 2, 5

  1. Для меньшего числа зачеркнем те множители, которые уже есть у большего числа:

  1. Перемножим все оставшиеся числа:

(НОК (10; 12) = 1 bullet 2 bullet 2 bullet 3 bullet 5 = 60)

Наш ответ совпал с ответом, где мы использовали метод подбора.

Ответ: 60.

ВЗАИМОСВЯЗЬ НОК И НОД:

Произведение НОК и НОД некоторых чисел равно произведению самих этих чисел:

(НОК(a; b) bullet НОД(a; b) = a bullet b)

Докажем эту формулу на примере.

Пример №6:

Рассмотрим пару чисел 24 и 60.

  1. Найдем их НОД:

(НОД (24;60) = 12)

  1. Найдем их НОК:

(НОК (24; 60) = 1 bullet 2 bullet 2 bullet 2 bullet 3 bullet 5 = 120)

  1. Рассмотрим поближе НОК. Чтобы его получить, мы переменожили все простые множители чисел 60 и 24 за исключением множителей 1, 2, 2, 3. Найдем отдельно их произведение:

(1 bullet 2 bullet 2 bullet 3 = 12)

Если перемножить все простые множители числе 60 и 24 мы получим просто их произведение, при этом оно будет состоять из НОК и числа 12, которое в свою очередь равно НОД:

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти вкусную дыню
  • Как найти синус на калькуляторе онлайн
  • Cdek отслеживание по номеру заказа как найти
  • Как найти забытые документы
  • Как исправить слипание слов в ворде 7

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии