380в как найти нулевой провод

Как определить фазу и ноль разными способами

Содержание

  • 1 Определение рабочей фазы и нуля с помощью приборов
    • 1.1 С использованием индикаторной отвертки
    • 1.2 Определение фазы и ноля мультиметром
  • 2 Как определить ноль и фазу без приборов
  • 3 Использование самодельной «контрольки»
  • 4 Видео по теме

В домашнем хозяйстве возникают проблемы при монтаже розеток и выключателей, подключении систем освещения, бытовых электрических приборов и других подобных устройств. Обычно они питаются от однофазных источников, провода которых состоят из двух проводников — фазного и нулевого. В более безопасном варианте к ним добавляется третий провод — земля или заземление.

провод

Большинство бытовой электрической техники нормально функционируют при строго определенном, согласно рабочей схеме, подключении проводников. Основой для успешного решения вопроса будут навыки определения, где фаза, а где ноль. Выполнить эту достаточно несложную работу можно самостоятельно, без привлечения электриков, а значит с экономией на финансовых затратах.

Способы, как найти фазу и ноль, имеют место, как с использованием приборов, так и без них.

Определение рабочей фазы и нуля с помощью приборов

Фазный проводник предназначен для подачи тока потребителю, поэтому на него подается рабочее напряжение ( в бытовой сети 220 В). В отличие от него нулевой проводник выполняет функции замыкания цепи и его потенциал близок к нулю. На этом отличии как раз основан принцип как идентифицировать фазу и ноль с помощью электрических приборов.

С использованием индикаторной отвертки

Основное предназначение индикаторных отверток проверка наличия/отсутствия напряжения. Данная техническая характеристика прибора позволяет определить фазный и нулевой провода питающей сети.

Устройство отвертки обеспечивает удобное и безопасное ее использование. Принципиальная схема представлена на изображении.

Принципиальная схема

Токопроводящий металлический стержень с плоским жалом на конце выполняет функции непосредственно контактирующего элемента с испытуемым проводом. В схеме присутствует ограничивающий величину тока до безопасных значений для человека высокоомный резистор. Он соединяется с индикаторной лампочкой с помощью пружины.

Замыкается цепь из перечисленных элементов на колпачке с контактом. Колпачок располагается на корпусе отвертки изготовленной из прозрачного пластика с возможностью удобного касания рукой человека. Его тело после контакта с колпачком будет выступать в качестве элемента цепи, по нему ток сбрасывается в землю.

Загорание лампочки дает необходимую информацию, как определить фазу и ноль индикаторной отверткой. С касанием токопроводящим стержнем фазного провода лампочка индикатора горит, контакт с нулем оставляет ее потухшей.

определить фазу и ноль индикаторной отверткой

Важно: при выполнении работ с помощью индикаторной отвертки с целью предотвращения получения электрической травмы запрещается касаться руками рабочего токопроводящего стержня.

Определение фазы и ноля мультиметром

В однофазной проводке из трех проводов с помощью индикаторной отвертки можно определить только фазу, ноль и землю отличить с ее помощью невозможно. Мультиметром или как он называется в быту тестером можно решить весь комплекс вопросов как проверить функциональную принадлежность всех трех проводов.

Мультиметры принадлежат к многофункциональным приборам, поэтому для определения принадлежности того или иного провода следует выбрать и установить рабочее состояние в положение «вольтметр». Предел измерения выставить больше 220 В.

  • Первое действие заключается в проверке напряжения на всех трех проводах щупом, который находится в гнезде тестера «V» (обозначение гнезд могут различаться, это самое распространенное). Провод с максимальным значением напряжения будет фазой. мультиметр
  • Далее один из двух щупов соединяем с фазой, а другим касаемся поочередно двух оставшихся проводов.
  • В случае если напряжение на шкале мультиметра будет равно 220 В, то этот провод нулевой. При напряжении на проводе меньшем, чем 220 В, найдем заземляющий.

Как определить ноль и фазу без приборов

Согласно ПУЭ (Правил Устройства Электроустановок) каждому проводу имеющему свое функциональное назначение соответствует своя определенная цветовая маркировка:

  • фазный провод имеет изоляцию черного, белого, коричневого (наиболее часто используемого) цветов и их многочисленных оттенков;
  • нулевой провод имеет изоляцию синего цвета с любыми его оттенками;
  • земля находится в изоляции желто — зеленого цвета в полоску.

Если бы нормативные акты строго соблюдались, то проблем с определением, где фаза, где ноль, а где земля не существовало. Для того чтобы легче было ориентироваться в коммутационных схемах на многих электрических приборах вводятся обозначения фазы, ноля и земли. Все проводники обозначаются в соответствии с государственными стандартами:

  • L — этой латинской буквой обозначается фаза;
  • N — по этому знаку находят нулевой провод;
  • PE — этим сочетанием букв всегда обозначалась земля.

обозначения фазы, ноля и земли

Однако визуальный метод имеет долю субъективизма, не всегда можно точно определить правильно цвет изоляции проводника. Кроме этого не все электрики придерживаются нормативных документов при проведении электромонтажных работ. В зданиях старой постройки, говорить о каких — либо стандартах цветовой маркировки проводки вообще не приходится.

Поэтому такой метод найти фазу и ноль без приборов существует с большой степенью условности, 100 % гарантии он не имеет. Однако он является единственным реальным способом среди других, типа применения сырой картошки, как определить фазу и ноль без приборов. Для получения достоверного результата лучше воспользоваться данными о соответствии проводов фазе, нулю или заземлению проверенных с помощью индикаторной отвертки или мультиметра.

Использование самодельной «контрольки»

Бывают случаи, когда необходимо срочно подключить электрическое устройство, а в домашнем хозяйстве отсутствуют необходимые приборы для определения фазы и нуля. Часто это происходит на даче вдали от благ цивилизации. Однако найти там электрическую лампочку, патрон от нее и кусок электрического провода не представляет больших проблем.

Изготовить самостоятельно контрольную лампочку не представляет труда. Достаточно подключить два провода к патрону и закрутить в него электрическую лампочку. Для удобства эксплуатации концы проводов оборудовать щупами (если такие удалось найти).

контролька

Принцип идентификации проводов «контролькой» не отличается от того как определить индикаторной отверткой фазу и ноль. Для определения фазы следует один из контактов «контрольки» подключить к любому из проверяемых проводов, а второй контакт соединить с заземлением. Если лампа будет светиться, то узнаете о принадлежности его к фазе.

Главный недостаток использования самодельной «контрольки» в отсутствии безопасности проведения работ. Существует реальная возможность получения удара электрическим током.

Видео по теме



Как определить фазу и ноль мультиметром

Проще работать, когда электрический контур снабжения дома заземлен правильно, покажем, что выход найдется всегда. Поясним, как понять, где фаза, и как узнать, где ноль. Хватайте любимый М890С! Посмотрим, как определить фазу и ноль мультиметром.

Простейшие методики нахождения фазы, нуля мультиметром

Организованный правильно контур заземления дома устраняет проблемы. Во-первых, изоляция PEN желто-зеленого цвета. Спутать с коричневой (красной) фазой, синей нейтралью невозможно. Случается, проводка проложена, нарушая требования, цвета перепутаны, отсутствуют вовсе (алюминиевый кабель). Поиск фазы мультиметром осуществляем простым алгоритмом:

  1. Допустим, квартира располагает тремя проводами: фаза, нуль, земля.
  2. Ставим мультиметр на диапазон переменного напряжения 750 вольт, начинаем попарно тестировать проводку.
  3. Между фазой и любым другим проводом будет 230 вольт (действующее значение), перемычка земля-нейтраль дает приближено 0.

Подъездный щиток располагает минимум пятью проводами, фаз три. Дальнейший процесс определяется фантазией местных электриков. Хорошие мастера вешают стикеры А, В, С, указывающие местоположение фаз. Заземление желто-зеленое, нейтраль чаще синяя.

Меж соседними фазами напряжение 380 (400) вольт. Квартиры высоток иногда снабжают двумя фазами. Электрические плиты мощностью выше 10 кВт стараются разделить потребление. Уменьшаются требования к проводке. Советуем немедленно взять маркер, пометить изоляцию нужными цветами. Дом, лишенный заземления, обычно получает два провода: фазу, нейтраль. Трансформатор подстанции гонит три фазы. Сколько окажется в квартире, следует выяснить.

Проблемы начнутся, когда отсутствует маркировка проводов, фаза приходит одна. Между опасными проводами напряжение составит… нуль!

  • Два провода несут фазу, нейтраль одна, заземление забыли проложить. Между питающими жилами круглый нуль, при оценке нулевого провода получаем 230 вольт. Ситуация выглядит, будто фазные жилы стали нейтралью и нулем. Напутали при прокладке – что поделаешь? Требуется искать дополнительный источник опоры. Подойдет отвертка-индикатор.
  • Два провода одной фазы, вторая пара – заземление, нейтраль. Попарно покажут нуль, перекрестно – 230 В. Воспользуйтесь опорным ориентиром.

Отсутствует щуп-отвертка, заручившись помощью тестера как ни звони проводку, проблема останется. Требуется опорный источник, гарантированно заземленный. Подходят:

  1. Контур заземления громоотвода часто ведут по наружной стене здания, полоса стали задевает торец балкона. Идет вертикально вниз. Заземлена, годится избранной цели с двумя оговорками: слой ржавчины сточите напильником, работы выполняйте, когда небо безоблачное (опасайтесь молнии).
  2. Простейшим выходом станет водопроводный кран ванной. Трубы сейчас пластиковые. Но внутри находится отличный электролит – вода с растворенными солями жесткости. Коснитесь черным щупом тестера рукава крана, выполняйте измерения относительно точки опоры. Применяйте боковины фитингов медных, латунных, алюминиевых. Была бы вода.

Ввиду разнообразия методик, ненадежности рекомендуется до начала серьезных работ провести тесты. Измерить потенциал между указанными ориентирами, фазой розетки. Расстояние между ориентиром, точкой назначения велико? Берем удлинитель. Особенно хорош фильтр питания персонального компьютера, снабженный характерной подсвечивающейся кнопкой. Фаза слева, левый штырь штекера (смотря какой стороной повернуть) помечаем маркером.

Затем вызваниваем с розеткой (без питания, понятное дело), делаем отметку с нужной стороны. Поясняем, можно обойтись без этого, с электрикой лучше отставить шутки. Осталось найти фазу, пользуясь помощью М890С. Ставим диапазон выше 380 вольт (между двумя фазами), начинаем измерять разность потенциалов между клеммами и щитком. Полагаем, дальнейший алгоритм понятен.

Правильно измерить потребление фазы

Измерим нагрузку фаз. Чтобы поставить правильные автоматы, соблюсти равномерное потребление. По правилам трехфазной сети каждую ветвь загружают одинаково, избегая перекосов на стороне поставщика. Оценим, какие фазы входят в квартиру. Проще заглянуть в подъездный щиток. Неопытный человек обязан прекратить попытки лезть туда. Легко получить удар током.

Дом старый – на виду увидите большую стальную пластину, которая явно соединяется с корпусом. Означенное – нейтраль. Дом питается трехфазным напряжением 380 вольт. Каждую квартиру снабжают чаще одной фазой. Тройку зажимов наблюдаем помимо заземлительной клеммы. Посмотрите, куда идут провода: автоматы, рубильники (сообразно счету квартир). Типичное количество соседей по площадке количеством три упрощает задачу анализа.

Теперь знаем метод отыскания фазы мультиметром, можем смело (с осторожностью, соблюдая меры безопасности) потыкать щупами. Потрудитесь выставить правильный диапазон, не сжечь прибор. Измерениями подтвердите или опровергните предположения. Фаз две – каждую нагрузите поровну. Изучите распаячные коробки, в большинстве старых домов находящиеся под потолком (большие круглые отверстия стены). Отключив снабжение квартиры, вооружившись тестером, поймите, куда и что идет. Используйте радикальный метод – отрубите одну пробку, посмотрите, где пропало питание.

Нагрузка двух фаз неравномерная – поправьте. Лучше сделать для автоматов и пробок, что положительно скажется на уменьшении стоимости оборудования распределительного щитка. В довершение по этой теме скажем, что правила работы предусматривают выполнение подобных мероприятий числом не менее двух лиц. Один обязательно страхует и готов отрубить подачу энергии, обрезать токоведущую жилу или ногой оттолкнуть страдающего от удара электричеством с опасной территории.

Схема питания квартиры двумя фазами

Как измерить трехфазное напряжение мультиметром

В этом разделе речь скорее пойдет о специфике трехфазных сетей. Большинство мультиметров позволяет измерять напряжение до 750 вольт переменного тока, чего вполне достаточно для работы с серьезными промышленными сетями. Каждый дом снабжается от трех фаз. А то, что в промышленности называют нейтралью, мы именуем нулевым проводом.

Сети предприятий прокладывают двух типов:

  1. Механизмы с изолированной нейтралью нулевым проводом не пользуются. Внутри нагрузки фаз уравнены, токи утекают через эти же провода, которых в сумме три. Устанете искать нейтраль – линия отсутствует. Три провода фазные, относительно земли покажут напряжение 230 вольт, между собой – 380.
  2. Заземленная нейтраль представляет нулевой провод. Помечается буквой N на коробках. Полезно смотреть принципиальные схемы промышленных приборов, приведенные на корпусе. Поможет понять раскладку.

Освоив методики работы с трехфазным напряжением, каждый сможет лучше понять электрическую разводку многоэтажного дома. Где из-под щитка поднимаются четыре жилы: три фазы и нейтраль.

Фазы автомобиля

Электрические сети помогают многим объектам. Автомобиль считается относительно простым устройством. Основу снабжения составляют аккумулятор 12 вольт (реально – 14,5 В), генератор, уровень выходного напряжения которого регулируется сообразно вариациям оборотов. Напряжение после выпрямления пригодно подпитывать аккумулятор бортовой сети. Активация вала генератора ведется аккумулятором через специальное регулирующее устройство.

Трехфазная схема Ларионова

Выпрямляемые диодным мостом схемы Ларионова фазы питают авто. Популярная сегодня методика. Диодов присутствует шесть штук. Фазы сливаются механическим объединением после выпрямления единой магистралью. Обеспечивает максимальную мощность. Чувствительные компоненты авто (бортовой компьютер), дополнительно выпрямляют нестабильный ток. Чтобы продлить срок службы устройства.

Далее напряжение идет потребителям. Дворники, система индикации, освещение, зажигание. Бортовой компьютер может выдать закодированное сообщение: пора проверить датчик фаз. Элемент, работа которого использует эффект Холла, определяет положение распределительного вала двигателя. Подобными оснащают стиральные машины, оценивая скорость вращения. Авто определяет угловое положение вала. Датчик выдает импульсы, оценивая параметры которых компьютер получит нужную информацию.

Сенсорами авто напичкан. На две клеммы подается питание, третья формирует сигнал. Для проверки посмотрим схему: местонахождение узлов. Затем вплотную займемся прозвонкой. Имитируя условия формирования импульсов, пользуйтесь постоянным магнитом.

Вопрос, как определить фазу и ноль мультиметром на авто, отпадает. Опорой служит корпус автомобиля – масса. Понятное дело, генератор работает только при запущенном двигателе. Внутри квартиры ищем фазу и нуль, здесь масса задана априори. Можно вызванивать пробитую изоляцию (например, диодов выпрямительного моста). На авто проще простого измерить три фазы мультиметром. Действующее значение косвенно сказали. Порядка 20 вольт (учитывая потери неидеального моста).

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Источник

Как проверить напряжение между фазами 380 мультиметром

Напряжение, или вольтаж, — это один из параметров электрического тока, показывающий разницу потенциалов на участке цепи. Он равнозначен электродвижущей силе, и фактически является одним из самых важных факторов для работы любых электроприборов.

Проверка напряжения — едва ли не самая частая операция, которую приходится выполнять в работе с электротехникой, вне зависимости от того, обслуживание это промышленной или бытовой (домашней) электросети. От его величины, а также от самого факта наличия, зависит, будет ли работать электроприбор, а также может ли он выйти из строя. В настоящее время для измерения напряжения используется аппарат под названием мультиметр.

Общее назначение

Это многофункциональное устройство, предназначенное для измерения целого ряда параметров электрического тока. Современный мультиметр, даже полупрофессиональный, предназначенный для бытовых нужд, способен измерять:

  • переменное и постоянное напряжение;
  • переменный и постоянный ток (силу тока);
  • сопротивление.

Это минимальный перечень функций, которыми обладает даже самое простое устройство. Более сложные имеют функции прозвонки диодов и транзисторов, проверки целостности кабелей и т.п. Есть модели, которые позволяют мерить даже температуру.

Обычный бытовой прибор используется в сетях, напряжение которых не выше 1000 вольт постоянного или 750 вольт переменного тока. Чтобы измерить высокое напряжение, применяется только профессиональный высоковольтный мультиметр.

Ошибки пользователей мультиметра

Китайские мультиметры настроены работать, даже если неправильно поставлены щупы. Сломать прибор случайно остерегайтесь. Избегайте способа: воткнуть черный провод в разъем измерения высоких токов, красный – на свое место. Попытаетесь измерить переменное напряжение высоковольтной линии – ремонт обеспечен. Нельзя применять неправильные диапазоны. Зарекитесь пытаться измерить переменное напряжение, применив шкалу постоянного. Проверка фаз станет последней в жизни мультиметра.

Прибор выводится из строя большим напряжением переменной полярности. Прочее (к примеру, неправильная полярность щупов) не так страшно.

Устройство

Мы будем рассматривать цифровые мультиметры (они же — тестеры), поскольку. аналоговые (снабженные стрелкой и полем со шкалой значений) в настоящее время уже почти вышли из обихода.

На рынке существует большое разнообразие мультиметров, но у всех из них есть следующие элементы:

  • цифровой дисплей;
  • переключатель для выставления параметров;
  • 2-4 гнезда для подключения контактных щупов;
  • два контактных щупа.

Работает прибор от батарейки. Мы будем рассматривать самое простой мультиметр для домашнего использования, измеряющий три основных параметра — напряжение, силу тока и сопротивление электрического проводника. Подавляющее большинство других функций в быту не нужны, за исключением функции прозвонки. Но прежде чем переходить к измерению напряжения, разберемся, какое оно бывает.

Разница между переменным и постоянным напряжением

Правильнее будет говорить о разнице между постоянным и переменным током. Различные электроприборы работают либо от постоянного тока, либо от переменного.

Переменный означает, что направление движения электронов в проводнике меняется от плюса к минусу с заданной частотой, то есть меняется полярность тока. В бытовой розетке по стандарту действующее напряжение 220 В, (амплитудное 311 В) а частота изменения тока 50 Гц. От такого напряжения работают все включающиеся в розетку приборы.

А вот аккумуляторы и батарейки — это источники постоянного тока. Они всегда имеют фиксированные плюс и минус (полярность). Частота у постоянного тока, естественно, отсутствует.

Подключение штекеров

Перед тем, как измерять напряжение, мультиметр надо выставить в соответствующий режим. Для маркировки напряжения используются либо аббревиатуры ACV — переменное, и DCV — постоянное, либо пиктограммы, дополняющие обозначение V — вольтаж. Так, V

— это переменное напряжение. V с горизонтальной длинной чертой, под которой три коротких — это постоянное.

Обратите внимание! Если на вашем приборе есть только обозначение V, значит, он способен автоматически определять, переменное оно или постоянное. Кроме пиктограмм, обозначающих тип напряжения, на корпус мультиметра нанесены диапазоны величин. Большинство бытовых приборов имеют границы измерения до 750 В переменного и до 1000 В постоянного напряжения.

Перед тем, как замерить напряжение в розетке, на аккумуляторе или другом приборе, подключите к мультиметру щупы. Их два — черный и красный. А вот гнезд может быть и два, и три, и четыре — в зависимости от класса прибора.

Черный щуп — это либо минус, либо «ноль». Он всегда устанавливается в гнездо мультиметра, обозначенное COM. Красный щуп — либо плюс, либо «фаза». Для его подключения выбирается гнездо, снабженное соответствующей маркировкой. Если гнезд только 2 — вопрос снят, если больше — выбирайте то, около которого есть символ V.

Другие гнезда могут быть маркированы либо 10-20А, либо mA — соответственно для измерения силы тока (сверхбольшой или сверхмалой), либо иметь другие обозначения и соответственно предназначения. Гнездо для вольтажа всегда одно.

Тестирование двухфазной модели

Статор и многие другие конструктивные элементы двухфазного электрического двигателя имеют свои отличительные признаки, которые и определяют особенности проверки.
К особенностям проверки двухфазного электрического двигателя отнесем следующие моменты:

  1. В этом случае обязательно проверяется сопротивление на корпусе. Слишком низкий показатель указывает на то, что нужно выполнить перемотку статора.
  2. Для получения более точных показателей рекомендуется использовать мегомметр, однако подобный измерительный инструмент встречается дома крайне редко.

Перед тестированием электрического двигателя следует провести визуальный осмотр. Механические повреждения могут привести к серьезным проблемам с работой.

Установка режима измерения

После установки щупов переведите переключатель мультиметра на подходящий диапазон. Если измеряется напряжение в розетке, выбирайте пороговое значение в 750 ACV, если, к примеру, автомобильного аккумулятора — 20 или 200 DCV.

Обратите внимание! Всегда необходимо устанавливать предел измерения выше предполагаемого напряжения на источнике питания. Иначе вы рискуете сжечь прибор.

Есть правило: вольтаж измеряется путем параллельного подключения мультиметра, (тогда как сила тока — последовательно с нагрузкой). На практике это значит, что для того, чтобы померить напряжение в розетке, необходимо просто вставить в нее оба щупа мультиметра, каждый в свое гнездо. Где ноль, где фаза — не имеет значения.

Прибор показывает напряжение в тех пределах, на которые он отрегулирован. Таким образом, если выставить верхний порог в 750 В — увидите на экране значение в диапазоне 210-230 В. Или меньше, или больше, если скачок напряжения очень велик, но выше 750 В он подняться не может. Но если выставить порог в 200 В, то при фактической величине напряжения выше этой границы на экране появится цифра 1.

Учтите, что ровно 220 В в бытовой розетке бывает не всегда. Допустимы отклонения плюс-минус 10-15 В.

Проверка трехфазной линии осуществляется контактом двух щупов мультиметра с двумя шинами. Между ними должно быть 380 В, между одной шиной и землей будет 220 В (плюс-минус 15).

Трехфазный мотор

Обмотка статора такого двигателя состоит из трех частей (фаз), разнесенных на 120 градусов и соединенных по схеме «звезда» или «треугольник». Двигатель работает при выполнении таких условий:

  • намотка выполнена в правильном порядке;
  • между витками, а также между токоведущими частями и корпусом есть надежная изоляция;
  • во всех соединениях имеется хороший электрический контакт.

Сначала проверяется сопротивление изоляции между токоведущими частями и корпусом. Правильнее это делать мегомметром — тестером, способным генерировать напряжение до 2500 В и измерять сопротивления до 300 ГОм. Подойдет и более распространенный мультиметр: точно замерять сопротивление он не позволит, но пробой выявить способен. Переключатель диапазонов измерений устанавливают на максимальное значение — 2 или 20 МОм.

Трехфазные асинхронные двигатели

Замеры выполняют в таком порядке:

  • проверяют работоспособность прибора, приложив щупы один к другому: в норме на дисплее отображается мизерное значение или число с двумя нулями впереди;
  • касаются обоими щупами корпуса двигателя: при наличии контакта мультиметр также покажет мизерное сопротивление;
  • продолжая удерживать один щуп на корпусе, вторым по очереди касаются выводов каждой фазы: в норме мегомметр показывает 500 – 1000 МОм или более, мультиметр — единицу (символизирует бесконечность).

Низкое сопротивление между обмоткой и корпусом говорит о замыкании, требуется перемотка статора.

  1. Целостность обмотки: данную операцию удобно выполнять, переключив мультиметр в режим прозвонки. Если в цепи обрыва нет, прибор подаст звуковой сигнал, то есть пользователю не приходится вчитываться в показания на дисплее. Концы каждой обмотки находятся в коробке выводов. Отсутствие звукового сигнала или высокое значение сопротивления на дисплее говорит об обрыве цепи.
  2. Короткозамкнутые витки: их сопротивление (достаточно мультиметра) должно лежать в определенных пределах. Завышенное значение говорит об обрыве, низкое — о межвитковом замыкании.

В завершение замеряют сопротивление обмоток. Допускается разница не более 1 Ом.

При большем несоответствии, обмотка с меньшей индуктивностью подгорает из-за более высокой силы тока.

Проверка батарейки

Как измерить напряжение на батарейке? Необходимо черный щуп законтачить с ее минусом, красный — с плюсом, и выставить границу на 20 DCV. Для любых домашних батарей и аккумуляторов этого достаточно. Для сравнения: аккумулятор легкового автомобиля выдает 13-14 В. Только мощные аккумуляторы грузовиков предназначены для напряжения 24 В и выше.

Мультиметр покажет сохранившийся заряд батареи. Если вы перепутали полярность — ничего страшного, просто на экранчике появится знак «-». Проверяя батарейку, учтите, что «свежая» батарейка должна выдавать значение вольтажа немного больше, чем указано на ее корпусе.

Прижимая щупы к контактам батарейки или аккумулятора, удара током бояться не стоит: порог чувствительности человеческой кожи — 36 В. Даже 20 В вы не почувствуете. Но проверяя ток во вскрытом электроприборе или розетке, нужно быть осторожным. Нельзя использовать щупы с поврежденной изоляцией.

Возможные неисправности

Если мультиметр перестал измерять напряжение или неправильно его показывает, проверьте другим тестером батарейку, размещенную внутри корпуса, или просто замените ее. Проверьте также, соответствует ли выставленный порог измерения напряжению, которое должно быть у объекта, который вы проверяете. Проверьте, верно ли установлен характер вольтажа — батарея не проверяется в режиме переменного, а розетка — постоянного напряжения.

Если не определяется параметр в одной розетке, проверьте его в другой. Если проблема возникла при проверке маленькой батареи — возможно, дело в плохом контакте щупа и клеммы.

Протестируйте устройство на различных объектах, априори работоспособных. Если мультиметр в принципе перестал измерять вольтаж, то либо иссяк его встроенный источник тока, либо повреждена плата управления, либо — наиболее частый случай — поврежден кабель одного из щупов. Следует осмотреть кабели на предмет разрыва, убедиться в хорошем контакте с гнездом. Если разрыв обнаружен — замените или почините провод, восстановив его целостность.

Если же никаких видимых причин потери работоспособности не обнаружено, то, скорее всего, мультиметр сгорел. Это могло произойти из-за попытки измерить завышенное напряжение, либо мощного сетевого скачка или других причин.

Расположение контактов трехфазного двигателя и прозвонка обмоток

Рассматриваем размещение концов обмоток трехфазного двигателя

, определяем, верно ли они подключены.

Можно испытать точно откалибровать устройство и пристально измерить сопротивления всех обмоток, сравнивая результаты. Но разница показаний даже в данном случае не всегда будет видна.

Более четкие результаты позволяет получить мостовой способ измерения активного сопротивления, но это, обычно, лабораторный метод, труднодоступный большинству электриков.

Замер токов потребления в фазах

При межвитковом замыкании меняется соотношение токов в обмотках, проявляется лишний нагрев статора. У исправного мотора токи схожи. Потому прямое их измерение в действующей схеме под нагрузкой более точно отражает реальную картину технического состояния.

Измерения переменным током

Найти полное сопротивление обмотки с учетом индуктивной составляющей в полной рабочей схеме не всегда может быть. Для этого придется снимать крышку с клеммной коробки и врезаться в проводку.

У выведенного из работы мотора можно использовать для замера понижающий трансформатор с вольтметром и амперметром. Ограничить ток дозволит токоограничивающий резистор либо реостат соответственного номинала.

При выполнении замера обмотка находится снутри магнитопровода, а ротор либо статор могут быть извлечены. Баланса электрических потоков, на условие которого проектируется движок, не будет. Про то как проверить и двигатель от можно ли поверить мультиметром? И как можно. Потому употребляется пониженное напряжение и контролируются величины токов, которые не должны превосходить номинальных значений.

Замеренное на обмотке падение напряжения, поделенное на ток, по закону Ома даст значение полного сопротивления. Его остается сопоставить с чертами других обмоток.

Эта же схема позволяет снять вольтамперные свойства обмоток. Просто нужно выполнить замеры на различных токах и записать их в табличной форме либо выстроить графики. Если при сопоставлении с подобными обмотками серьёзных отклонений нет, то межвитковое замыкание отсутствует.

Шарик в статоре

Метод основан на разработке вращающегося электрического поля исправными обмотками. Как проверить электродвигатель мультиметром пошаговая. Для этого на их подается трехфазное симметричное напряжение, но непременно пониженной величины. С этой целью обычно используют три схожих понижающих трансформатора, работающих в каждой фазе схемы питания.

Для ограничения токовых нагрузок на обмотки опыт проводят краткосрочно.

Маленькой металлической шарик от шарикоподшипника вводят во крутящееся магнитное поле статора сходу после включения витков под напряжение. Если обмотки исправны, то шарик синхронно катается по внутренней поверхности магнитопровода.

Когда одна из обмоток имеет межвитковое замыкание, то шарик зависнет в месте неисправности.

Во время теста нельзя превосходить ток в обмотках больше номинальной величины и следует учесть, что шарик свободно выскакивает из корпуса со скоростью вылета из рогатки.

Электрическая проверка полярности обмоток

У статорных обмоток может отсутствовать маркировка начала и концов выводов и это сделает труднее корректность сборки.

На практике для поиска полярности употребляются 2 метода:

1. при помощи маломощного источника неизменного тока и чувствительного амперметра, показывающего направление тока;

2. способом использования понижающего трансформатора и вольтметра.

В обоих вариантах статор рассматривается как магнитопровод с обмотками, работающий по аналогии трансформатора напряжения.

Проверка полярности посредством батарейки и амперметра

На наружной поверхности статора выведены шестью проводами три отдельных обмотки, начала и концы которых нужно найти.

При помощи омметра вызванивают и отмечают вывода, относящиеся к каждой обмотке, к примеру, цифрами 1, 2, 3. Потом произвольно маркируют на хоть какой из обмоток начало и конец. К одной из оставшихся обмоток подключают амперметр со стрелкой в центре шкалы, способной указывать направление тока.

Минус батарейки агрессивно подключают к концу избранной обмотки, а плюсом краткосрочно прикасаются к ее началу и сходу разрывают цепь.

При подаче импульса тока в первую обмотку он за счет электрической индукции трансформируется во вторую замкнутую через амперметр цепь, повторяя первоначальную форму. При этом, если полярность обмоток угадана верно, то стрелка амперметра отклонится на право при начале импульса и отойдет на лево при размыкании цепи.

Если стрелка ведет себя по-другому, то полярность просто спутана. Остается только промаркировать выводы 2-ой обмотки.

Еще одна 3-я обмотка проверяется аналогичным образом.

Проверка полярности посредством понижающего трансформатора и вольтметра

Испытание изоляции обмоток

Эксплуатационная надежность электродвигателя обусловлена состоянием изоляции. Вибрация работающего двигателя, тепловые, химические процессы ухудшают электроизолирующие свойства. Поэтому при диагностике после ремонта нужно испытать в электротехнической лаборатории изоляцию.

Есть испытательный трансформатор, вторичное повышенное напряжение которого подается между одной из обмоток и остальными катушками, соединенными с корпусом электромотора. Величины испытательных напряжений:

Мощность электродвигателя, кВт Испытательное напряжение, В
До 1 500+2Uноминальное
От 1, для номинального напряжения 100 вольт 1000+2Uн, но не менее 1,5 кВ

Если ремонт выполнялся своими руками и нельзя проверить стендом, нужно испытать изоляцию мотора мегомметром. Он подает высокое напряжение, какого нет в мультиметре.

Проверяя электродвигатель мультиметром на 380 вольт, нужно учесть, что работы проводятся при отключенной сети. Работа с электричеством требует собранности, внимания, чтобы не получить удара током. Соблюдая меры безопасности, проверить исправность агрегата достаточно просто.

Определение фазы индикаторной отверткой

Наиболее простой метод определения фазы, который подойдет для любого обывателя — это использование индикаторной отвертки, или как ее еще называют «контрольки».

Контрольная отвертка по внешнему виду очень похожа на обычную, за исключением своей внутренней начинки. Не советую использовать жало отвертки для откручивания или завинчивания винтов. Именно это чаще всего и приводит ее к выходу из строя.

Как определить фазу и ноль этой отверткой? Все очень просто:

  • ⚡жалом отвертки прикасаетесь к контакту
  • ⚡нажимаете или дотрагиваетесь пальцем до металлической кнопки в верхней части отвертки
  • ⚡если светодиод внутри отвертки загорелся — это фазный проводник, если нет — нулевой

Не перепутайте индикаторную отвертку с отверткой для прозвонки. Последняя в своей конструкции имеет батарейки. Здесь для того, чтобы определить фазу и ноль, при касании жалом контактов, не нужно дотрагиваться пальцем до металлической площадки на конце. Иначе отвертка будет светиться в любом случае.

По правилам, лампочка индикатора рассчитанного на 220-380В, должна светиться при напряжении от 50В и более.

Аналогичным образом определяется фаза в розетке, выключателе и любом другом оборудовании.

Меры безопасности при работе с «пробником»

  • ⚡никогда не дотрагивайтесь до нижней части отвертки при замерах
  • ⚡отвертка перед измерением должна быть чистой, иначе может произойти пробой изоляции
  • ⚡если индикаторной отверткой необходимо определить отсутствие напряжения, а не его наличие, для того чтобы безопасно можно было работать с проводкой, сначала проверьте работоспособность прибора на оборудовании заведомо находящегося под напряжением.

Особенности проверки электромоторов с дополнительными элементами

Дополнительными элементами, электродвигатели оснащаются с целью оптимизации работы или защиты.

  1. Термопредохранители: отключают двигатель от электропитания по достижении температуры, опасной для изоляционных материалов. Располагаются на корпусе (крепятся скобой) или под изоляцией обмотки. Во втором случае проверку выполнить проще, поскольку выводы легкодоступны. Определить, с какими разъемными ножками связана защитная схема, можно при помощи мультиметра или индикатора фазы (похож на отвертку с лампочкой). В норме сопротивление между выводами термопредохранителя весьма мало (короткое замыкание).
  2. Термореле: часто применяются вместо термопредохранителей. Обычно бывают нормально замкнутыми, но встречаются и разомкнутые. Для диагностики по нанесенной на корпус реле маркировке, в справочниках или Интернете, находят сопротивление его компонентов, затем проверяют мультиметром их фактическое значение. Для поиска в Сети, в строке набирают марку реле и следом «Data Sheet» («даташит»). Если термореле сгорело, по его параметрам подбирают аналог.
  3. Трехвыводные датчики оборотов двигателя. Устанавливаются в стиральных машинах. Основной элемент датчика — металлическая пластина, на которой при пропускании через нее токов малой величины формируется разность потенциалов.

Как проверить мультиметром напряжение в розетке 220в

Для измерения напряжения в розетке цифровым тестером, необходимо вставить щупы в гнезда розеток, полярность при этом неважна, главное при этом — не касаться руками токопроводящих частей щупов.

Еще раз напомню, что на мультиметре должен быть выставлен режим определения напряжения переменного тока, предел измерения выше 220в, в нашем случае 500В, щупы подключены в разъемы «COM» и «VΩmA».

Если мультиметр рабочий и нет проблем с подключением розетки или перебоев с электроснабжением, то прибор покажет вам напряжение близкое к 220-230В.

Такого простого теста достаточно чтобы продолжить поиск фазы тестером. Сейчас, в качестве примера, мы определим какой из двух проводов, например, выходящих из потолка для люстры, фазный.

Если бы провода было три – фаза, ноль и заземление, то достаточно было бы измерить напряжение на каждой из пар, точно так же, как мы определяли его в розетке. При этом между двумя проводами напряжения практически бы не было – между нолем и заземлением, соответственно оставшийся третий провод фазный. Ниже представлена наглядная схема определения.

Если же провода, для подключения светильника, только два и вы не знаете какой из них каакой, то опознать их таким образом не получится. Тогда нам и приходит на помощь метод определения фазы мультиметром, который я сейчас опишу.

Всё достаточно просто, мы просто должны создать условия для протекания через тестер электрического тока, и зафиксировать его. Для этого просто создаём электрическую цепь, по тому же принципу, что и у индикаторной отвертки.

В режиме проверки напряжения переменного тока, с выбранном пределом 500В, красным щупом прикасаемся к проверяемому проводнику, а черный щуп зажимаем пальцами рук либо касаемся им заведомо заземленной конструкции, например, радиатора отопления, стального каркаса стены и т.п. При этом, как вы помните, черный щуп у нас воткнут в разъем COM мультиметра, а красный в VΩmA.

Если на проверяемом проводе будет фаза, мультиметр покажет на экране достаточно близкую к 220 Вольтам величину напряжения, в зависимости от условий тестирования она может быть разной. Если же провод не фазный, значение будет или нулевым, или очень низким, до нескольких десятков вольт.

Еще раз напомню, ОБЯЗАТЕЛЬНО УБЕДИТЕСЬ ПЕРЕД НАЧАЛОМ ПРОВЕРКИ, ЧТО НА МУЛЬТИМЕТРЕ ВЫБРАН РЕЖИМ ОПРЕДЕЛЕНИЯ НАПРЯЖЕНИЯ ПЕРЕМЕННОГО ТОКА, а не какой-нибудь другой.

Вы, должно быть скажете, что метод достаточно рискованный, становится частью электрической цепи и добровольно попасть под напряжение захочет не каждый. И хотя такой риск есть, он минимальный, ведь, как и в случае с индикаторной отверткой, напряжение из сети проходит через большое сопротивление резистора, встроенного в мультиметр и удара током не происходит. А работоспособность этого резистора, мы проверили, предварительно измерив напряжение в розетке, если бы его там не было, сложились бы все условия для короткого замыкания, которое, уверяю вас, вы бы сразу обнаружили.

Конечно, как я уже писал выше, лучше вместо руки использовать заземленные конструкции – радиаторы и трубы отопления, стальной каркас здания и т.д. но, к сожалению, такая возможность есть не всегда и нередко приходится браться за щуп самому. Бывалые электрики советуют в таких случаях всё же принять дополнительные меры безопасности: стоять на резиновом коврике или в диэлектрической обуви, касаться щупа сперва кратковременно, правой рукой и лишь не обнаружив опасных воздействий тока, выполнить измерение.

В любом случае это единственный, самый надежный и простой способ определить фазу бытовым мультиметром самому.

Источник

Если проводка выполнена правильно, вы можете определить фазный, нейтральный и заземляющий провода по цвету изоляции. Заземление представляет собой двухцветную изоляцию желто-зеленого цвета, изоляция нейтрального провода – синяя или голубая, а фазный провод может быть белым, черным или коричневым. Визуальный контроль может быть использован для проверки правильности прокладки проводов путем проверки соответствия цвета изоляции не только в распределительном щите, но и в распределительных коробках.

В бытовых электрических сетях на входе в распределительную коробку имеется трехфазное напряжение 380 В переменного тока. Проводка в жилых домах, за редким исключением, имеет напряжение 220 В, поскольку подключается к одной из фаз и нейтральному проводу. Кроме того, правильно смонтированная домашняя проводка должна быть заземлена. В старых зданиях заземляющий проводник может отсутствовать. Поэтому при монтаже проводки и приборов необходимо знать назначение каждого из двух или трех проводов.

Вам также необходимо знать правила подключения различных приборов. При установке стандартной розетки фазный и нулевой провода подключаются к клеммам в любом порядке, а провод заземления, если он есть, подключается к медному или латунному стержню. Выключатель подключается к фазному проводу так, чтобы при его отключении напряжение на цоколе лампы отсутствовало – это обеспечит безопасность при замене ламп. Сложные бытовые приборы с металлическими корпусами должны подключаться в соответствии с маркировкой проводов, иначе безопасность их использования не гарантируется.

Стандарт маркировки проводов

Почему важно определить правильный фазовый проводник

При подключении электроприборов к сети используется рабочий “фазный” проводник. Напряжение подается непосредственно на источник потребления. Было бы ошибкой подключать потребителя к “нейтрали”, поскольку при разомкнутой цепи (выключенном приборе) сеть остается под напряжением. Это хорошо видно, когда выключатель лампочки подключен к нейтральному проводу. После этого розетка постоянно находится под напряжением. Такое соединение опасно, когда требуется замена лампочки или самого плафона.

Фазный провод

Важно правильно определить фазный провод.

Существуют следующие способы определения принадлежности подключенных проводов:

Советы электрика

Важно, чтобы владелец, не обладающий обширными знаниями в области электротехники, следовал следующим рекомендациям опытных электриков:

  1. При использовании мультиметра внимательно прочитайте инструкцию по эксплуатации прибора, чтобы убедиться, что контакты зонда вставлены правильно и что прибор настроен правильно.
  2. Метод контрольной лампы связан с повышенным риском поражения электрическим током и поэтому не рекомендуется для пользователей, не имеющих навыков работы с электропроводкой.
  3. Не полагайтесь слепо на наличие маркировки или цветовой кодировки изоляции проводов без предварительного инструментального контроля, так как нельзя исключить возможность неправильного монтажа.

Правильное определение принадлежности электропроводки позволит правильно подключить дом и обеспечить безопасность пользователей.

Во-первых, давайте определим, что такое фаза и нейтраль. Вся наша энергосистема трехфазная, включая низковольтные линии, питающие дома и квартиры. Как правило, напряжение между двумя фазами составляет 380 вольт – это напряжение сети. Всем известно, что напряжение в домашней сети составляет 220 вольт. Как получить это напряжение?

Как найти фазу и ноль? Несколько способов поиска фазного и нулевого проводов

В этой статье мы рассмотрим, как найти фазный и нулевой провода с помощью пробника и мультиметра.

Когда вам необходимо провести электромонтажные работы в доме, например, заменить розетки и выключатели или сделать мелкий ремонт, вам может понадобиться определить фазный и нулевой провода. Если кто-то обладает базовыми знаниями в области электротехники, он может легко найти фазу и нейтральную точку. Но что, если у вас нет этого навыка? Найти фазу и нейтраль не так сложно, как вам кажется. Давайте рассмотрим несколько способов определения фазы и нейтрали.

Как найти фазу и нейтраль проводника? Несколько способов найти фазный и нулевой проводник

Во-первых, давайте определим, что такое фаза и ноль. Вся наша энергосистема трехфазная, включая низковольтные линии, питающие дома и квартиры. Как правило, напряжение между двумя фазами составляет 380 вольт – это линейное напряжение. Всем известно, что напряжение в бытовой сети составляет 220 вольт. Как получить это напряжение?

Для этого в электрической системе с рабочим напряжением 380 вольт имеется нейтральный провод. Если взять одну из фаз и нулевой провод, то между ними возникает разность потенциалов 220 вольт, что и является фазным напряжением.

Это не очень понятно для человека, не знакомого с электротехникой. Нам важно знать, что в каждой квартире или доме есть одна фаза и одна нейтраль. Подробно о том, что такое фазы и нули, описано здесь.

Первый метод определения фазы заключается в использовании фазового тестера (остроконечной отвертки). Подробнее об устройстве и работе этих отверток вы можете прочитать здесь – Индикаторы напряжения и индикаторы для электроустановок до 1000 вольт.

Итак, у вас есть два провода, и вам нужно определить, какой из них фазный, а какой – нейтральный. Сначала отключите их от напряжения, отключив автоматический выключатель, питающий эту линию электропроводки.

Затем оба провода необходимо изолировать, т.е. снять 1-2 см изоляции. Изолированные проводники должны находиться на небольшом расстоянии друг от друга, чтобы при подаче напряжения не произошло короткого замыкания в результате контакта между ними.

Индикаторы напряжения

Следующим шагом является определение фазного провода. Включите предохранитель, подающий напряжение на проводники. Держите индикаторную отвертку за ручку и коснитесь одним пальцем металлической части у основания ручки.

Обратите внимание, что запрещается брать зонд ниже рукоятки, т.е. за рабочую часть. Поднесите щуп к одному из проводов и коснитесь его рабочей частью. Ваш палец останется на металлической части ручки.

Если загорается индикатор отвертки, это означает, что данный провод является фазным, т.е. фазой. Поэтому другой провод равен нулю.

Если индикатор не загорается при касании провода, это нейтральный провод. Другой провод, как положено, является фазой, что можно проверить, прикоснувшись к нему отверткой.

Как найти фазу и нейтраль

Что делать, если в вашей квартире три провода? В этом случае вы имеете дело не только с фазным и нулевым проводником, но и с заземляющим проводником. С помощью пробника можно легко определить, какой из трех проводов является фазой.

Но как определить, какой проводник является нейтральным, а какой – защитным, или заземляющим? В этом случае отвертки недостаточно. Давайте рассмотрим, как определить нейтраль в трехпроводной домашней сети.

Вы можете использовать мультиметр, чтобы определить, где находится нейтральный провод, а где защитный (заземляющий) провод. Итак, мы уже определили фазовый проводник с помощью зонда. Возьмите мультиметр и включите его на переменный ток в диапазоне 220 вольт или выше.

Возьмите два контакта измерительного прибора и приложите один к фазе, а другой – к одному из двух других проводов. Запишите показания напряжения на мультиметре.

Затем оставьте один из щупов на фазе, а другой приложите к другому проводнику и снова запишите значение напряжения. Если вы одновременно коснетесь фазы и нейтрали, то увидите значение линейного напряжения, которое составляет около 220 вольт. Если прикоснуться к фазе и защитному проводнику, значение напряжения будет немного ниже предыдущего значения.

Мультиметр

Если у вас нет пробника, фазу можно также проверить с помощью мультиметра. Для этого выберите диапазон измерения переменного напряжения выше 220 В. Подключите два щупа мультиметра к гнездам “COM” и “V” соответственно.

Возьмите щуп, находящийся в гнезде с маркировкой “V”, и коснитесь им проводов. Если прикоснуться к фазе, измерительный прибор покажет небольшое значение 8-15 В. Если вы коснетесь нейтрального провода, показания останутся на нуле.

Картофель разрезается пополам, и подготовленные проводники вставляются в выемку овоща на довольно приличном расстоянии друг от друга. Конец одного из них помещается на радиатор (или другую известную заземленную поверхность), а конец другого подключается к идентифицируемой жиле кабеля. Вам придется подождать от пяти до десяти минут, чтобы получить результат. Если по истечении указанного времени на поперечном срезе картофеля появляется темное пятно, это означает, что вы проверили фазовый проводник. Если изменений нет, то это нейтральный проводник.

Основные понятия

Во-первых, давайте выясним, что такое земля и фаза в электричестве.

Таким образом, фаза В электричестве это проводник, по которому электрический ток течет к устройству, получающему энергию. Нольв свою очередь, является проводником, по которому электрический ток течет в обратном направлении.

Современные требования безопасности к организации электрических сетей также требуют, чтобы в токоведущей жиле был еще один проводник для выполнения защитной функции. Заземляющий проводник – это элемент, намеренно подключенный к заземляющему проводнику для защиты людей от поражения электрическим током.

Неправильное определение и подключение нулевого и фазного проводников заземляющего проводника может привести к непредвиденным ситуациям – короткому замыканию, выходу из строя дорогостоящего оборудования и поражению людей электрическим током. По этой причине чрезвычайно важно уметь различать фазный и нулевой проводники.

Кстати, картофель – это ничто… Есть “эксперты”, которые серьезно рекомендуют проверять фазу легким прикосновением пальца к проводнику. Говорят, что если носить диэлектрические ботинки в сухом помещении, то ничего плохого не случится. Таких “советчиков” хочется спросить – а уверены ли они, что все те, кто прислушался к их рекомендациям, живы и здоровы? Не было ли “аварийных ситуаций”, когда человек, пытающийся проверить фазу “на ощупь”, случайно касался своим телом заземленного предмета или другого оголенного проводника?

Определение фазы и нейтрали различными способами

Использование отвертки

Это, пожалуй, самый простой и доступный метод. Как уже говорилось, стоимость простого инструмента очень низкая. А для того, чтобы научиться им пользоваться, требуется всего несколько минут.

Базовая конструкция простой отвертки показана ниже:

Конструкция простой индикаторной отвертки

Конструкция простой отвертки

Все детали этой отвертки смонтированы в полом корпусе (поз. 1), изготовленном из диэлектрического материала.

Отвертка имеет металлический наконечник (поз. 2), обычно плоской формы. Чтобы уменьшить вероятность случайного контакта с другими токопроводящими частями вблизи тестируемого провода, оголенный конец жала обычно имеет небольшой размер. Жало либо короткое само по себе, либо “облачено” в изолирующую оболочку.

Важно – во время тестирования жало индикаторной отвертки следует рассматривать как контактный наконечник. Да, его можно использовать и для выполнения простых монтажных работ, например, при необходимости открутить винт, удерживающий крышку розетки или выключатель. Но использовать его регулярно в качестве отвертки – большая ошибка. И он не прослужит долго в таком применении 0 он просто не предназначен для больших нагрузок.

Металлический штырь, входящий в корпус, становится проводником для обеспечения контакта с внутренними цепями индикатора. А сама схема состоит, во-первых, из мощного резистора (поз. 4) номиналом не менее 500 кОм. Его функция заключается в снижении тока в замкнутой цепи до безопасного для человека уровня.

Другим элементом является неоновая лампочка (поз. 5), которая способна загораться при очень низких токах. Электрический контакт всех компонентов схемы обеспечивается пружиной сжатия (поз. 6). Он сжимается ввинчивающимся штекером (поз. 7), который может быть цельнометаллическим или с металлической ножкой. Другими словами, этот разъем выступает в качестве контактной точки для тестирования.

Прикоснувшись пальцем к контактной пластине, пользователь “включается” в цепь. Человеческое тело, во-первых, само обладает определенной проводимостью и, во-вторых, является очень большим “конденсатором”.

На этом основан принцип поиска фазы и нуля. Жалом тестовой отвертки коснитесь изолированного проводника (клеммы розетки или выключателя, другого тонкого проводника, например, контактного наконечника цоколя лампочки). Затем прикоснитесь пальцем к контактной пластине зонда.

Тест показывает, что стрелочная отвертка коснулась фазы

Тест показывает, что индикаторная отвертка коснулась фазы

Если кончик отвертки коснулся фазы, при замыкании цепи возникает напряжение, достаточное для возникновения безвредного тока, который заставляет светиться неоновую лампочку.

Однако, если проверка проводится на нейтральном контакте, свечения не будет. Да, существует небольшая вероятность, особенно если в квартире (доме) одновременно работают другие электроприборы. Однако ток, вызванный резистором, будет настолько мал, что не должен вызвать свечение индикатора.

То же самое относится и к проводу заземления – фактически, на нем вообще не должно быть потенциала.

В том же случае, если, например, два контакта в розетке показывают фазу, это повод для поиска причины столь серьезной неисправности. Но это тема для отдельного обзора.

Несколько иной тест проводится с использованием более современного типа индикаторной отвертки. Этот тип отвертки позволяет не только определять фазу и нейтраль, но и разрезать провода и выполнять ряд других операций.

Внешне такие индикаторные отвертки очень похожи на простые отвертки, рассмотренные выше. Единственное отличие заключается в том, что вместо неоновых ламп используются светодиоды. В корпусе находится батарейка 3 В, которая обеспечивает работу схемы.

Небольшое дополнение к системе расширяет функциональность индикаторных отверток

Небольшое дополнение к схеме расширяет функциональность индикаторных отверток

Если пользователь не уверен, какая у него отвертка, можно провести простой тест. Просто одновременно прикоснитесь рукой к стилусу и сенсорной пластине. Это приведет к замыканию цепи, о чем светодиод сообщит своим светом.

Простой тест, показывающий, какая индикаторная отвертка доступна домашнему мастеру. Если загорается индикатор (верхняя часть), это отвертка со встроенным питанием и функцией звонка. Если нет, то это обычная отвертка.

Простой тест показывает, какая индикаторная отвертка доступна домашнему мастеру. Если индикатор (вверху) горит, это отвертка со встроенным источником питания и функцией “проверка штекера”. Если нет, то это обычная отвертка.

Зачем все это написано? Просто потому, что алгоритм определения фазы и нуля немного отличается при использовании такой отвертки. В частности, касание контактной пластины не требуется. Прикосновение к фазному проводу вызывает свечение индикатора. Такое свечение не возникнет при наличии нейтрали и заземленного рабочего проводника.

В настоящее время широко доступны более дорогие отвертки с индикатором, с электронной зарядкой, со световой и звуковой сигнализацией. Во многих случаях они даже оснащены цифровым ЖК-дисплеем, на котором отображается напряжение тестируемого проводника. Таким образом, по сути, стрелочная отвертка становится упрощенной версией мультиметра.

Отвертки с электронными индикаторами: левая - со световой и звуковой индикацией, правая - также с цифровым дисплеем

Отвертки с электронным индикатором: левая – со световой и звуковой сигнализацией, правая – также с цифровым дисплеем

Эти электронные отвертки не сложны в использовании. Следуйте инструкциям, прилагаемым к прибору – в любом случае прибор должен четко показывать наличие напряжения на фазном проводе и отсутствие напряжения – на нейтральном или заземленном проводе. Перед началом проверки важно убедиться, что мощность используемого устройства соответствует напряжению сети. Обычно это обозначено непосредственно на корпусе индикатора.

Еще одним “родственником” индикаторных отверток является бесконтактный тестер напряжения. На корпусе вообще нет токопроводящих частей. Рабочая часть представляет собой удлиненный пластиковый “носик”, который подводится к проверяемому проводу (клемме).

Бесконтактный индикатор напряжения - может

Бесконтактный индикатор напряжения – “чувствует” фазу даже через изоляцию.

Он также удобен тем, что нет необходимости снимать изоляцию с проверяемого провода. Он реагирует не на контакт, а на изменяющееся электромагнитное поле, создаваемое проводником. При определенной интенсивности цепь срабатывает, и устройство сигнализирует о том, что оно является фазовым проводником, включив световой и звуковой сигнал.

Определение фазы и нуля с помощью мультиметра

Еще один прибор, который должен быть у каждого опытного домовладельца, – мультиметр. Стоимость недорогих, но достаточно функциональных моделей – в диапазоне от 300÷500 рублей. Стоимость недорогих, но достаточно функциональных моделей находится в диапазоне 300÷500 рублей.

Мультиинструмент - необходимый предмет в арсенале хорошего домовладельца.

Мультиметр – незаменимый инструмент в арсенале хорошего домохозяина.

Как же определить фазу с помощью мультиметра? Здесь может быть много различных вариантов.

А. Если жгут проводов имеет три проводника, т.е. фазу, нейтраль и защитное заземление, но цветовая маркировка не является четкой или определенной, можно использовать метод исключения.

Это осуществляется следующим образом:

  • Мультиметр подготовлен к работе. Подключите черный тестовый провод к гнезду COM, а красный – к гнезду для измерения напряжения.
  • Переключатель режима работы переводится в сектор для измерения переменного напряжения (
  • Затем измеряется напряжение между ранее изолированными проводниками. Всего существует три комбинации:
  1. Между фазой и нейтралью напряжение должно быть близко к номиналу 220 В.
  2. Между фазой и землей наблюдается такая же картина. Однако если линия оборудована защитой от токов утечки (УЗО), то защита может сработать. Если УЗО отсутствует или ток утечки незначителен, напряжение близко к номинальному значению.
  3. Между нулем и землей не должно быть напряжения.

Именно последнее значение будет указывать на то, что проводник, не участвующий в данном измерении, является фазным проводником.

Определение фазного провода из группы трех проводов с помощью мультиметра методом исключения

Определение фазного провода группы из трех проводов с помощью мультиметра методом исключения

После испытания отключите напряжение, изолируйте зачищенные концы проводников и проведите определение. Например, наклеив полоски белой клейкой ленты и пометив их соответствующим образом.

Б. Вы также можете проверить провод (контакт в розетке), непосредственно проверив напряжение на нем. Это делается следующим образом:

  • Подготовьте мультиметр таким же образом, как показано выше.
  • Затем измеряется испытательное напряжение. Здесь мы имеем дело с двумя целями одновременно. Первое – убедиться, что в линии нет разрыва, чтобы мы не искали фазу и ноль, как говорится, посреди ничего. Во-вторых, тестируется и само устройство. Если показания верны, это означает, что коммутация была выполнена правильно и в цепи имеется мощный резистор, обеспечивающий достаточную безопасность при последующих операциях.
  • Красный тестовый провод касается тестируемого проводника. Если это розетка, то щуп вставляется в розетку, если зачищенный конец проводника, то лучше использовать зажим “крокодил”.
  • Прикоснитесь к другому зонду пальцем правой руки. Наблюдайте за показаниями на дисплее мультиметра.

– Если эталонный зонд установлен на ноль, напряжение не отображается. Или значение будет очень низким – измеряется в единицах вольт.

Измерительный провод мультитестера находится в нулевом положении - напряжение отсутствует или очень мало.

Если контрольный щуп мультитестера находится в нулевом положении, то напряжение либо отсутствует, либо очень мало.

– В том же случае, когда измерительный провод находится в фазе, индикатор покажет напряжение в десятки вольт или даже больше. Конкретная величина не так важна – она зависит от очень многих факторов. Это связано с пределом измерения используемой модели мультитестера, сопротивлением тела, влажностью, температурой воздуха, обувью, в которую одет тестер, и т.д. Самое главное, что напряжение есть, и оно разительно отличается от второго контакта. Другими словами – фаза найдена.

Однако такое прочтение позволяет нам сделать вывод, что фаза была найдена

И из этих показаний ясно, что фаза найдена.

Наверное, не каждый способен преодолеть психологический барьер – прикоснуться рукой к щупу, когда мультитестер подключен к сети. Бояться нечего – устройство было предварительно протестировано нами с помощью измерения напряжения. А ток, протекающий через него при замыкании цепи, мало чем отличается от тока отвертки. Но все же – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно сделать немного по-другому. Например, достаточно коснуться стены – штукатурки или даже обоев – вторым стилусом. Присутствует какая-то влага, которая замыкает цепь. Правда, показания на индикаторе, скорее всего, будут гораздо ниже. Но и этого будет достаточно, чтобы четко определить, какой контакт является фазовым.

Второй

Вторым “контактом” может быть просто стена рядом с испытательным полигоном.

Аналогичный тест будет таким же хорошим, если вторым контактом будет заземленное устройство или предмет, например, радиатор или водопроводная труба. Также подойдет металлическая рама, даже не заземленная. А иногда даже один зонд, подключенный к розетке, с другим зондом, лежащим на полу или столе, может изменить ситуацию. При проверке фазы тестер может показывать единицы или десятки вольт. В случае нулевого проводника естественно появится ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть, если проводников три. То есть, фаза определена, и теперь нужно выяснить, какая из двух других равна нулю, а какая – защитной земле.

Это не так просто. Конечно, существует несколько методов. Но ни одна из них не может претендовать на роль “окончательной истины”. Поэтому для этого требуется специальное оборудование, которым располагают профессиональные электрики.

Но иногда помогает и самоконтроль.

Один из них уже упоминался выше. Когда мы измеряем напряжение между фазой и нулем, оно не должно вызывать никаких особенностей. Однако при измерении между фазой и землей неизбежный ток утечки может вызвать срабатывание системы защиты – УЗО.

Даже небольшой ток утечки между фазой и защитным заземлением может вызвать срабатывание УЗО.

Даже небольшой ток утечки между фазой и защитным заземлением может вызвать срабатывание УЗО.

Другим способом определения нейтрали и защитного заземления является зондирование. Вы можете попробовать, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, конечно, отключив напряжение на панели, измерить сопротивление между этими проводниками и гарантированно заземленным объектом. При использовании заземляющего проводника это сопротивление теоретически должно быть намного меньше.

Но опять же, этот метод не надежен, так как связи разные и значения могут быть примерно одинаковыми, т.е. не значимыми.

Полоса заземления в распределительном щите

Заземляющая планка в распределительном щите

Другой вариант – отсоединить заземляющую планку от цепи питания. В качестве альтернативы отсоедините от него проверяемый кабель. Затем проведите циферблатный тест или поочередно измерьте напряжение между фазой и двумя другими проводами. Результаты часто говорят вам о том, где нейтраль, а где физкультура.

Но, по правде говоря, этот метод не кажется ни эффективным, ни безопасным. Опять же, из-за различных нюансов проводки и коммутации в распределительных устройствах, результаты могут быть не совсем надежными.

В новой статье на нашем портале вы узнаете, как пользоваться мегомметром, его назначение и приемы использования видеоприбора.

Поэтому, если вам нужно убедиться, где находится нулевой провод и заземление, и вы не можете определить это самостоятельно, лучше поручить это квалифицированному электрику. При всей схожести домашней проводки эти проводники никогда не следует путать.

Итак, мы рассмотрели основные доступные методы определения фазы и нейтрали. Опять же, если визуальный метод определения (по цветовой маркировке изоляции) не гарантирует достоверной информации, то все остальные должны выполняться только с использованием специального оборудования. Никакой “100% методологии” со всевозможными картофелинами, пластиковыми бутылками, банками с водой и прочими “игрушками” – абсолютно неприемлемо!

Кстати, в публикации также ничего не говорится об использовании так называемого “тестера” – Лампочка в розетке с двумя проводами. Опять же – это связано с тем, что такие испытания прямо запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не подвергайте риску свою семью!

В конце публикации приводится короткий видеоролик, посвященный проблеме поиска фазного и нулевого проводника.

  • Классифицируются ли помещения как влажные в соответствии с ESM?.
  • Глава 2. 7. Заземляющие устройства Приказ Минэнерго России от N 6 (издан от ) об утверждении Правил технического обслуживания электроустановок потребителей (зарегистрирован в Минюсте России N 4145).
  • Самый возмутительный вопрос – заземление; Школа электриков: электротехника и электроника.
  • Индикатор напряжения. Типы и применение. Эксплуатация и применение.
  • Система выравнивания потенциалов.
  • Типы винтов и пазов, их названия и применение.
  • 5 причин, почему лампочки часто перегорают в вашей квартире и что делать?.

Необходимость разобраться, где расположен фазный провод, а где — нулевой может возникнуть у любого хозяина дома или квартиры. Это бывает нужно при проведении простейших электромонтажных работ, например, установке выключателей и розеток, замене светильников. Бывает это важно при проведении диагностики неисправностей домашней электросети, выполнении профилактических или ремонтных мероприятий. Да и некоторые приборы, например, терморегуляторы, при подключении к сети питания требуют четкого соблюдения расположения проводов «L» и «N» в клеммной колодке. В противном случае ничто не гарантирует ни их долговечность, ни корректность в работе.

Как определить фазу и ноль без приборов

Как определить фазу и ноль без приборов

Значит, необходимо научиться самостоятельно определять фазный и нулевой провод. Дело это не столь сложное – существуют проверенные методики с использованием простых и недорогих устройств. Но вот некоторые пользователи, непонятно по каким причинам, задают в поисковиках вопрос: как определить фазу и ноль без приборов? Ну что ж, давайте обсудим эту проблему.

Несколько слов об устройстве домашней электросети

В подавляющем большинстве случаев в квартирах практикуется прокладка однофазной сети питания 220 В/50 Гц. К многоэтажному дому подводится трехфазная мощная линия, но затем в распределительных щитах осуществляется коммутация на потребителей (квартиру) по одной фазе и нулевому проводу. Распределение стараются выполнить максимально равномерно, чтобы нагрузка на каждую из фаз была примерно одинаковой, без сильных перекосов.

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

В домах современной постройки практикуется прокладка и контура защитного заземления – современная мощная бытовая техника в своем большинстве требует такого подключения для обеспечения безопасности эксплуатации. Таким образом, к розеткам или, например, ко многим осветительным приборам подходят три провода – фаза L (от английского Lead), ноль N (Null) и защитное заземление PE (Protective Earth).

В зданиях старой постройки заземляющего защитного контура зачастую нет. Значит, внутренняя проводка ограничивается только двумя проводами – нулем и фазой. Проще, но уровень безопасности эксплуатации электрических приборов — не на высоте. Поэтому при проведении капитальных ремонтов жилищного фонда нередко включаются и мероприятия по усовершенствованию внутренних электросетей – добавляется контур РЕ.

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

Современная однофазная домашняя электропроводка в идеале должны быть организована с тремя проводами – фазой, рабочим нулем и защитным заземлением

В частных домах может практиковаться ввод и трехфазной линии. И даже некоторые точки потребления нередко организуются с подачей трехфазного напряжения 380 вольт. Например, это может быть отопительный котел или мощное технологическое станочное оборудование в домашней мастерской. Но внутренняя «бытовая» сеть все равно делается однофазной – просто три фазы равномерно распределяются по разным линиям, чтобы не допускать перекоса. И в любой обычной розетке мы все равно увидим те же три провода – фазу, ноль и заземление.

Про заземление, кстати, говорится в данном случае однозначно. И это по той причине, что хозяин частного дома ничем не связан и просто обязан его организовать, если такого контура не было, скажем, при приобретении ранее построенного зданий.

Заземление в частном доме – как можно сделать самостоятельно?

Иметь в своих жилых владениях контур защитного заземления – это значит существенно повысить уровень безопасности эксплуатации электроприборов. А по большому счету – и вообще степень безопасности проживания в доме для всей семьи. Если его еще нет, то, не откладывая надолго, необходимо организовывать заземление в доме своими руками. В помощь – статья нашего портала, к которой ведет рекомендованная ссылка.

Существуют ли в принципе способы определения фазы и нуля без приборов?

Прежде всего, давайте сразу «возьмем быка за рога» и ответим на это важный вопрос.

Такой способ представлен в единственном числе, да и то в определённой степени может считаться условным. Речь идет о цветовой маркировке проводов проложенных силовых кабелей и проводов.

Действительно, существует международный стандарт IEC 60446-2004 г. Его должны придерживаться и производители кабельной продукции, и специалисты, осуществляющие электротехнический монтаж проводки.

Раз речь идет об однофазной сети, то здесь вообще все должно быть просто. Изоляция проводника рабочего нуля должна быть синей или голубой. Защитное заземление чаще всего отличается зелено-желтой полосатой расцветкой. И изоляция фазного провода – каким-либо другим цветом, например, коричневым, как показано на иллюстрации.

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Провода в домашней электросети, выполненной по всем правилам, легко различить по цветовой маркировке их изоляции

Следует правильно понимать, что коричневый цвет для фазы – это вовсе не догма. Очень часто встречаются и иные расцветки – в широком диапазоне от белой до черной. Но в любом случае – она будет отличаться и от нулевого провода, и от защитного заземления.

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Все указанные на иллюстрации расцветки фазных проводов также в полной мере соответствуют действующему стандарту

Мнение эксперта:

Афанасьев Е.В.

Главный редактор проекта Stroyday.ru.

Инженер.

Задать вопрос эксперту

Казалось бы – все очень просто и наглядно. Не ошибешься. Так почему же этот единственный способ распознания проводов без приборов все же считается условным?

Все дело лишь в том, что такой цветовой «распиновки» придерживаются, увы, далеко не везде и не всегда. Про дома старой постройки – и говорить не приходится. Там преимущественно проводка выполнена проводами в совершенно одинаковой белой изоляции, понятно, ничего никому не говорящей.

Да и в том случае, когда проложены кабели с проводами в изоляции разной расцветки, нужно быть совершенно уверенным, что проводящие электромонтажные работы специалисты строго следовали правилам. Нередко вызываемые «мастера», приглашенные со стороны, в этих вопросах проявляют вольности. Значит, уверенным можно быть, если работа контролировалась, выполнялась действительно профессиональным электриком с безупречной репутацией. Или если в ходе эксплуатации у хозяев уже была возможность убедиться, что «цветовая схема» соблюдена. Ну и, наконец, если всю прокладку проводки хозяин жилья проводил самостоятельно, строго руководствуясь рекомендуемым стандартом.

Кроме того, бывает, что для проводки используется кабель, расцветка изоляции проводников которого весьма далека от стандартного «набора» — синий, зелено-желтый и фазный какого-либо другого оттенка. Если нет схемы с описанием, то цвет проводов ничего определенного при таком раскладе не скажет.

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

О чем может сказать такая цветовая маркировка проводов, если к ней не приложена «легенда»? Да практически ни о чем…

Значит, придётся искать фазу и ноль другими способами, с использованием приборов.

Если читатель ждет сейчас разъяснений про другие способы определения нуля и фазы, с помощью каких-то «экзотических» приспособлений вроде сырой картошки, то совершенно напрасно. Автор статьи и сам никогда такими методами не баловался, и другим никогда и ни при каких обстоятельствах не станет рекомендовать.

Не будем даже касаться достоверности подобных проверок. Главное не в этом. Такие «опыты» — чрезвычайно опасны. Особенно для неопытного в электрическом хозяйстве человека. (А опытный, поверьте, всегда лучше воспользуется действительно достоверной и безопасной методикой). Кроме того, на грех такие манипуляции могут увидеть малолетние дети. Не тревожно ли будет потом, зная о присущем малышне стремлении во многом подражать родителям?

Да и, по большому счету, вряд ли получится представить себе ситуацию, в которой обстоятельства настолько припекли, что приходится прибегать к таким «языческим» методикам? Сложно сходить в ближайший магазин и приобрести за 30÷35 рублей простейшую индикаторную отвертку и забыть о проблеме? Если вечер, то нет никакой возможности потерпеть до утра с проведением диагностики? Да, в конце концов, нельзя попросить индикатор у соседа на несколько минут?

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Простейшую, но вполне оправдывающую свое предназначение индикаторную отвёртку типа FIT 56514 вполне можно приобрести за 32 рубля. И никогда не вспоминать после этого про какие-то «народные методы».

Кстати, картошка – это еще что… Находятся «специалисты», которые на полном серьезе рекомендует проверять наличие фазы легким касанием пальца к проводнику. Мол, если в сухом помещении, да в обуви на диэлектрической подошве – то ничего страшного не случится. Таких «советчиков» хочется спросить – а уверены ли они, что все те, кто внял их рекомендациям, живы и здоровы? Что не случилось «чрезвычайщины», когда человек, пробующий фазу «на ощупь», случайно коснулся телом заземленного предмета или другого оголённого проводника?

Чтобы понять степень опасности таких «проверок», рекомендуем ознакомиться с информацией о том, какие угрозы представляет жизни и здоровью этот «безобидный» электрический ток в сети 220 вольт. Возможно, после этого многие вопросы снимутся сами по себе.

«Бытовое» переменное напряжение 220 вольт может представлять смертельную опасность!

Жизнь современного человека невозможно представить без электричества. Но оно не всегда выступает только в роли «друга и помощника». При пренебрежении правилами эксплуатации приборов, при халатности, неаккуратности, и тем более – явно наплевательском отношении к соблюдению требований безопасности, оно способно покарать мгновенно и крайне жестоко. Об опасности электрического тока для человеческого организма подробно рассказывает отдельная публикация нашего портала.

И потому – резюмируем. Никаких способов, кроме одного упомянутого, самостоятельно опередить расположение нуля и фазы без приборов – не существует.

А вот теперь давайте пройдемся по возможным методикам такой проверки.

Определение фазы и нуля различными способами

С использованием индикаторной отвертки

Это, пожалуй, самая простая и доступная методика. Как уже говорилось, стоимость простейшего прибора –весьма невысока. А научиться работать с ним – дело нескольких минут.

Итак, как устроена обычная индикаторная отвертка:

Устройство простейшей индикаторной отвертки

Устройство простейшей индикаторной отвертки

Вся «начинка» этого пробника собрана в полом корпусе (поз.1), изготовленного из диэлектрического материала.

Рабочим органом такой отвёртки является металлическое жало (поз.2), чаще всего – плоской формы. Чтобы снизить вероятность случайного контакта с расположенными рядом с тестируемым проводом другими токопроводящими деталями, оголенный конец жала обычно невелик. Жало иди короткое само по себе, иди «одевается» в изоляционную оболочку.

Важно – жало индикаторной отвертки следует рассматривать именно как контактный наконечник при проведении тестирования. Да, при необходимости им можно выполнить и простейшие монтажные операции, например, открутить винт, удерживающий крышку розетки или выключателя. Но регулярно использовать его именно в качестве отвертки – большая ошибка. И долго при такой эксплуатации прибор не проживет 0 он попросту не рассчитан на высокие нагрузки.

Металлический стержень жала, входящий в корпус, становится проводником, обеспечивающим контакт с внутренней схемой индикатора. А сама схема состоит, во-первых, из мощного резистора (поз.4) номиналом не менее 500 кОм. Его задача – снизить показатели силы тока при замыкании цепи до безопасных для человека значений.

Следующий элемент – неоновая лампочка (поз. 5), способная загораться при весьма небольших показателях протекающего через нее тока. Взаимный электрический контакт всех элементов схемы обеспечивает прижимная пружина (поз. 6). А она, в свою очередь, сжимается вкручивающейся в торцевую оконечность корпуса заглушкой (поз.7), которая может быть или полностью металлической, или имеющей металлическую «пятку». То есть эта заглушка при проведении проверок играет роль контактной площадки.

При прикосновении к контактной площадке пальцем пользователь «включается» в цепь. Тело человека, во-первых, само по себе обладает определенной проводимостью, а во-вторых, представляет собой очень большой «конденсатор».

На этом и основан принцип поиска фазы и нуля. Жалом индикаторной отвёртки касаются зачищенного проводника (клеммы розетки или выключателя, другой тонконесущей детали, например, контактного лепестка патрона для лампочки). Затем контактной площадки  пробника касаются пальцем.

Проверка показывает, что индикаторная отвертка коснулась фазы

Проверка показывает, что индикаторная отвертка коснулась фазы

Если жало отвертки коснулось фазы, то при замыкании цепи напряжения достаточно, чтобы вызвать неопасный для человека ток, приводящий к свечению неоновой лампочки.

В то же случае, если проверка пришлась на нулевой контакт, свечения не возникнет. Да, там тоже бывает небольшой потенциал, особенно если в квартире (доме) в это время работают другие электрические приборы. Но ток благодаря резистору будет настолько мал, что свечения индикатора вызвать не должен.

Аналогично и на заземляющем проводнике – там, по сути, вообще не должно быть никакого потенциала.

В том же случае, если, скажем, в розетке два контакта показывают фазу – это повод искать причину такой серьезной неисправности. Но это уже тема для отдельного рассмотрения.

Несколько иначе выполняется проверка с индикаторной отверткой более усовершенствованного типа. Такие пробники позволяют не только определять фазу и ноль, но и проводить прозвонку цепей и ряд других операций.

Внешне такие отвёртки-индикаторы очень схожи с рассмотренными выше простейшими. Разница заключается лишь в том, что вместо неоновой лампочки используется светодиод. А в корпусе размещены элементы питания на 3 вольта, обеспечивающие функционирование схемы.

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Небольшое дополнение в схеме расширяет функциональные возможности индикаторных отверток

Если нет уверенности в том, какая конкретно отвертка имеется в распоряжении пользователя, можно провести простейший тест. Просто одновременно касаются рукой и жала, и контактной площадки. Цепь при этом замкнется, и светодиод об этом просигналит своим свечением.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Простой тест, показывающий, какая индикаторная отвертка имеется в распоряжении домашнего мастера. Если индикатор загорелся (верхний фрагмент) – то это отвертка со встроенным питанием и функцией прозвона. Если нет – это обычная.

Для чего это все говорится? Да просто потому, что алгоритм определения фазы и нуля при пользовании такой отверткой несколько меняется. А конкретно – прикасаться к контактной площадке не требуется. Простое касание фазного проводника вызовет свечение индикатора. На рабочем нуле и на заземлении такого свечения не будет.

В наше время в продаже широко представлены и более дорогие индикаторные отвёртки, с электронной начинкой, световой и звуковой индикацией. А нередко – даже с цифровым жидкокристаллическим дисплеем, показывающим напряжение на тестируемом проводнике. То есть, по сути, отвертка-индикатор становится упрощенным подобием мультиметра.

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Электронные индикаторные отвертки: слева — со световой и звуковой индикацией, справа — еще и с цифровым дисплеем

Пользоваться такими тоже не особо сложно. Руководствоваться придется прикладываемой к прибору инструкцией – в любом случае прибор должен однозначно указать на наличие напряжения на фазном проводе и отсутствие – на нулевом или заземляющем. Главное – убедиться до начала проверки, что возможности используемого прибора соответствуют напряжению в сети. Это обычно указывается непосредственно на корпусе индикатора.

Еще одним «родственником» индикаторных отверток является бесконтактный пробник напряжения. На его корпусе вообще полностью отсутствуют токопроводящие детали. А рабочая часть представляет собой вытянутый пластиковый «носик», который как раз и подводится к тестируемому проводнику (клемме).

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Бесконтактный индикатор напряжения – способен «почувствовать» фазу даже через изоляцию.

Удобство такого прибора еще и в том, что вовсе не обязательно проводить зачистку проверяемого провода от изоляции. Прибор реагирует не на контакт, а на создаваемое проводником электромагнитное переменное поле. При определенной его напряжённости срабатывает схема, и прибор сигнализирует о том, что перед нами фазный провод, включением светового и звукового сигнала.

Определение фазы и нуля с помощью мультиметра

Еще одним контрольно-измерительным прибором, которым бы необходимо обзавестись любому мастеровитому хозяину дома, является мультиметр. Стоимость недорогих, но в достаточной степени функциональных моделей – в пределах 300÷500 рублей. И вполне можно один раз сделать такое приобретение – оно обязательно окажется востребованным.

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Мультиметр обязательно должен стать одним из элементов инструментального «арсенала» хорошего хозяина дома или квартиры

Итак, как определить фазу с помощью мультиметра. Здесь могут быть различные варианты.

А. Если проводка включает три провода, то есть фазу, ноль и защитное заземление, но с цветовой маркировкой или нет ясности, или отсутствует уверенность в ее достоверности, то можно применить метод исключения.

Выполняется это следующим образом:

  • Мультиметр готовится к работе. Черный измерительный провод подключается к разъему СОМ, красный – к разъему для замера напряжения.
  • Переключатель режимов работы переводится в сектор, отведенный замерам переменного напряжения (~V или ACV), и стрелкой устанавливается на значение, превышающее напряжение в сети. В разных моделях это может быть, например, 500, 600 или 750 вольт.

Правильное положение измерительных проводов и переключателя режимов работы мультитестера

Правильное положение измерительных проводов и переключателя режимов работы мультитестера
  • Далее, проводятся замеры напряжения между предварительно зачищенными проводниками. Всего комбинаций в данном случае может оказаться три:
  1. Между фазой и нулем напряжение должно быть близким к номиналу в 220 вольт.
  2. Между фазой и заземлением может быть такая же картина. Но, правда, если линия оснащена системой защиты от утечек тока (устройством защитного отключения — УЗО), то защита вполне может при этом сработать. Если УЗО нет, или ток утечки получается совсем незначительный, то напряжение, опять же, в районе номинала.
  3. Между нулем и заземлением напряжения быть не должно.

Вот как раз последний вариант покажет, что провод, не участвующий в этом замере, и является фазным.

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

Определение фазного проводника из группы трех проводов с помощью мультиметра методом исключения

После проверки необходимо выключить напряжение, заизолировать зачищенные концы проводов и произвести маркировку. Например, наклеив полоски белого лейкопластыря и сделав на них соответствующие надписи.

Б. Можно проверить провод (контакт в розетке) и непосредственным примером напряжения на нем. Выполняется это так:

  • Подготовка мультиметра к работе – по той же схеме, что показывалась выше.
  • Далее, проводится контрольный замер напряжения. Здесь преследуются сразу две цели. Во-первых, необходимо убедиться, что обрыва в линии нет, и мы не будем искать фазу и ноль, что говорится, на пустом месте. А во-вторых, тестируется и сам прибор. Если показания корректные, значит – переключение выполнено правильно, и в цепь включён мощный резистор, который обеспечит должный уровень безопасности последующим операциям.
  • Красным измерительным проводом касаются тестируемого проводника. Если это розетка, то в гнездо вставляется щуп, если зачищенный конец проводника – лучше воспользоваться зажимом-«крокодильчиком».
  • Второго щупа касаются пальцем правой руки. И — наблюдают за показаниями на дисплее мультиметра.

— Если контрольный щуп был установлен на ноль, напряжение показываться не будет. Или же его значение будет крайне невелико — измеряемое единицами вольт.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

Контрольный измерительный провод мультитестера попал на ноль – напряжения или нет вовсе, или оно крайне незначительно.

— В том же случае, когда контрольный провод оказался на фазе, индикатор покажет напряжение в несколько десятков, а то и более вольт. Конкретное значение не столь важно – оно зависит от очень большого количества факторов. Это и установленный предел измерений используемой модели мультитестера, и особенности сопротивления тела конкретного человека, и влажность, и температура воздуха, и обувь, в которую обут мастер и т.п. Главное – напряжение есть, и оно разительно отличается от второго контакта. То есть – фаза отыскана.

А вот такие показания дают ясно понять, что отыскана фаза

А вот такие показания дают ясно понять, что отыскана фаза

Наверное, не все смогут преодолеть психологический рубеж – коснуться рукой щупа, когда мультитестер подключен к розетке. Бояться-то здесь особо нечего – мы предварительно протестировали прибор замером напряжения.  И ток, идущий сейчас через него при замыкании цепи – немногим отличается от того, что проходит через индикаторную отвертку. Но тем не менее – для некоторых такое прикосновение становится прихологически невозможным.

Ничего страшного, можно поступить и несколько иначе. Например, просто коснуться вторым щупом стены – штукатурки или даже обоев. Какая-никакая влажность все же есть, и это позволит замкнуть цепь. Правда, показания на индикаторе будут, скорее всего, значительно меньше. Но и таких будет достаточно, чтобы однозначно разобраться, какой же из контактов является фазным.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Вторым «контактом» может стать просто стена, расположенная около места проведения проверки.

Ничуть не хуже будет подобная проверка, если в качестве второго контакта будет задействован какой-либо заземленный прибор или предмет, например, радиатор отопления или водопроводная труба. Подойдет и металлический каркас, даже не имеющий заземления. А иногда даже один подключенный к розетке щуп при втором, просто лежащем на полу или на столе, позволяет увидеть разницу. При тестировании фазы тестер может показать единицы или пару десятков вольт. При нулевом проводнике, естественно, будет ноль.

В. С определением фазы, как видите, особых проблем нет. Но как быть в том случае, если проводов три. То есть с фазой определились, и теперь надо выяснить, какой из двух оставшихся является нулем, а какой – защитным заземлением.

А вот это – не столь просто. Есть, конечно, несколько доступных способов. Но ни один из них не может претендовать на «истину в последней инстанции». То есть здесь требуются особые приборы, которые имеются в распоряжении профессионалов электриков.

Но иногда помогают и самостоятельные тестирования.

Про одно из них уже говорилось выше. Когда замеряется напряжение между фазой и нулем, никаких особенностей это вызывать не должно. Но при замере между фазой и землей из-за неизбежной утечки тока возможно срабатывания системы защиты – УЗО.

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Даже небольшой ток утечки при измерении напряжения между фазой и защитным заземлением может привести к срабатыванию УЗО

Другой способ выявления нуля и защитного заземления – прозвон. То есть можно попытаться, переключив мультиметр на измерение сопротивления в диапазоне, скажем, до 200 Ом и, в обязательном порядке – отключив напряжение на щите, промерить поочередно сопротивление между этими проводниками и гарантированно заземленным объектом. На проводнике РЕ это сопротивление по идее должно быть значительно ниже.

Но, опять же, способ этот не отличается достоверностью, так как соединения практикуются разные, и значения могут получиться примерно одинаковыми, то есть ни о чем не говорящими.

Шина заземления в распределительном щите

Шина заземления в распределительном щите

Еще один вариант – можно отключить шину заземления от подводящего к ней контура. Или же снять с нее предполагаемый провод, подлежащий проверке. Затем – или выполнить прозвон, или провести поочередный промер напряжения между фазой и оставшимися двумя проводниками. Результаты часто позволяют судить о том, где ноль, а где РЕ.

Но, сказать по правде, этот способ не кажется ни действенным, ни безопасным. Опять же, по причине различных нюансов прокладки проводки и коммутации на распределительных щитах, результат может получиться не вполне достоверным.

Узнайте, как пользоваться мегаомметром, а также ознакомьтесь с его назначением и приемами работы с видео прибором, из нашей новой статьи на нашем портале.

Так что если нужна гарантированная ясность, где же ноль и где заземление, а самому выяснить не представляется возможным, лучше обратиться квалифицированному электрику. При всей схожести этих проводников в домашней проводке путать их ни в коем случае нельзя.

*  *  *  *  *  *  *

Итак, были рассмотрены основные доступные способы определения фазы и нуля. Еще раз подчеркнём – если визуальный способ определения (по цветовой маркировке изоляции) не гарантирует достоверности информации, то все остальные должны проводиться исключительно с использованием специальных приборов. Никакие «100% методики» со всяческими картошками, пластиковыми бутылками, банками с водой и иными «игрушками» – совершенно недопустимы!

Кстати, в публикации ничего не говорится и об использовании так называемой «контрольки» — лампочки в патроне с двумя проводниками. Опять же – это потому что такие тестирования напрямую запрещены действующими правилами безопасной эксплуатации электроустановок. Не рискуйте сами и не создавайте потенциальной угрозы своим близким!

В завершение публикации – небольшой видеосюжет, посвященный проблеме поиска фазы и нуля.

Видео: Как можно определить расположение фазы и нуля

Содержание:


При выполнении ремонтно-строительных работ важным этапом является подключение помещений и зданий к системе электроснабжения. В этом случае, кроме электропроводки, устанавливается большое количество другого оборудования, в том числе розеток и выключателей. При выполнении подключений довольно часто возникает вопрос, как определить фазу и ноль, а также заземляющий проводник в электрической сети. Для решение данной проблемы не представляет каких-либо затруднений.

Однако простые хозяева квартир и частных домов без специальных знаний и опыта, зачастую не могут самостоятельно решить эту задачу. Определить назначение каждого проводника возможно с помощью нескольких простых и доступных способов.

Как определить фазу и ноль индикаторной отверткой

Наиболее простым и распространенным способом, позволяющим точно определить фазу и ноль, является использование индикаторной отвертки. Данная операция не представляет каких-либо сложностей и требует лишь соблюдения определенного алгоритма действий.

Решая вопрос, как определить где фаза, а где ноль, прежде всего необходимо обесточить линию и отключить автомат, через который питается домашняя электросеть. После отключения следует зачистить проверяемые провода, сняв примерно 1-2 см изоляции. Далее проводники разводятся между собой на безопасное расстояние. Это необходимо сделать, чтобы исключить возможность короткого замыкания при случайном соприкосновении после подачи напряжения. После всех подготовительных мероприятий можно приступать к определению фазы и нуля. Предварительно следует включить автомат и подать напряжение в сеть.

Непосредственная проверка фазы и нуля тестером осуществляется следующим образом. Индикатор зажимается между большим и средним пальцем. При этом нельзя касаться пальцами открытой, неизолированной части жала отвертки во избежание удара электрическим током.

Указательный палец должен касаться круглого металлического выступа, расположенного в конце рукоятки. После этого жало отвертки прикладывается к зачищенным концам проводников. Если тестер коснулся фазного проводника, в этом случае загорается светодиод. Следовательно, второй провод является нулевым. Нулевой провод определяется когда индикаторная лампочка не загорелась изначально.

Как определить фазу и ноль мультиметром

Кроме индикаторной отвертки, определение фазы и нуля может быть выполнено с помощью мультиметра. В этом случае также необходима зачистка проводников, подлежащих проверке. Предварительно следует обесточить электрическую сеть путем выключения автомата. Таким образом исключается при случайном соприкосновении проводников фазы и нуля. Сами провода нужно немного раздвинуть. После этого автомат следует снова включить.

Далее на мультиметре устанавливается предельная величина для измерений переменного напряжения, составляющая более 220 В. Затем нужно посмотреть, какую маркировку имеют гнезда со щупами прибора. Щуп в гнезде СОМ не подходит для определения фазы, следовательно, использоваться будет оставшийся щуп, обозначенный символом V. Определившись со щупами, можно приступать к определению назначения проводов.

Нужно взять щуп, коснуться им одного из проводов в розетке и посмотреть на показания мультиметра. При отображении данных с небольшим значением напряжения (менее 20 В), провод будет считаться фазным. Если же измерительный прибор показывает нулевое значение, то и сам провод соответственно будет нулевым.

Для измерений может использоваться любой тип мультиметра — с цифровым табло или стрелочный. Точность измерений мультиметром значительно выше, чем индикаторной отверткой. При определение фазы и нуля мультиметром запрещается одновременно касаться фазного и заземляющего провода. Такие действия могут вызвать короткое замыкание и травматические ожоги.

Как определить фазу и ноль без приборов

Довольно часто возникают ситуации, когда отсутствует индикаторная отвертка и мультиметр, а выяснить назначение проводов нужно, чтобы не останавливать электромонтажные работы. В таких случаях приходится решать проблему, определения фазы и ноля без прибора.

Наиболее простым способом считается определение назначения проводов по их . Данная методика приносит положительный результат лишь тогда, когда проводка выполнена с соблюдением всех технических правил. В этом случае цвет изоляции прямо указывает на принадлежность того или иного провода.

В желто-зеленый цвет окрашивается заземляющий провод, а нулевой проводник чаще всего бывает голубого или синего цвета. Для фазного проводника выбирается черный, белый или коричневый провод. Правильность подключения можно проверить визуально, не только в щитке, но и в распределительных коробках, в люстре и других точках.

Второй способ определения фазы и нуля, предполагает использование так называемой контрольной лампочки. Можно воспользоваться обычной лампой накаливания и двумя отрезками проводов, по 50 см длиной каждый. Жилы проводов через подключаются к лампочке и конструкция готова к работе. Одним концом провода нужно коснуться трубы отопления, а другим — проверяемых проводов. Если во время прикосновения лампочка загорается, значит этот провод является фазным.

Данный способ в домашних условиях считается опасным в связи с высокой вероятностью поражения электрическим током. Его нельзя применять, когда в сети присутствует предельное напряжение. Более безопасным является использование неоновых лампочек, позволяющих с не меньшей точностью определить назначение проводов.

Назначение жил проводки обязательно требуется узнать при монтаже различных элементов системы питания и освещения в бытовых и промышленных помещениях. Как определить фазу и ноль, а заодно проводник заземления? Ответ можно получить после рассмотрения некоторых важных моментов.

Принципы устройства электрических сетей бытового назначения

При входе в щитки распределения бытовые сети имеют параметры линейного напряжения в 380 В для трехфазного тока переменного вида. А вот уже в самих помещениях проводка применяется 220-вольтовая. Это обусловлено способом подключения к нулевому проводнику и одной фазе. Исключения из этого правила встречаются очень редко.

Отметим также важный нюанс – обязательное заземление для использования в бытовых целях. При ведении работ в старых строениях нередко приходится сталкиваться с отсутствием проводника заземления. Следовательно, верно выполнить монтаж позволит четкое определение функционального назначения каждого провода.

Несколько правил требуется знать для верного подключения электроприборов:

  • нулевой и фазный проводники присоединяются в произвольном порядке к клеммам, а – к латунной или медной шине, при установке стандартной розетки;
  • монтаж выключателя выполняется способом подключения к фазному проводу, чтобы обеспечить отсутствие напряжения в отключенном состоянии в патроне;
  • более сложное оборудование устанавливается в строгом соответствии с нанесенной маркировкой проводов.

Несоблюдение подобного требования грозит опасностью замыкания и .
Четкое выполнение всех правил – гарантия безопасной эксплуатации бытовой электрической сети.

Какие потребуются приборы и инструменты

Комплект всего необходимого надо приготовить на подготовительной стадии:

  1. Цифровой или стрелочный мультиметр.
  2. Тестер или .
  3. Маркер.

Потребуется четко уяснить места расположения автоматов защиты, УЗО, пробок и выключателей. Чаще всего эти элементы находятся на площадках или возле входа в квартиру в распределительных щитках.
Зачистка проводов и работа с аппаратурой допускается только при автоматах, находящихся в положении «Выкл.».

Особенности работы с мультиметром и тестером

Если проверка производится с отверткой-индикатором, необходимо держать ее между средним и большим пальцами, избегая соприкосновения с неизолированным жалом. Кончик отвертки соприкасается с оголенной зоной проводов, при контакте с фазным проводником происходит загорание светодиода.

Напряжение между различными проводниками лучше всего определить мультиметром. Установка прибора происходит для измерения переменного тока со значком «~V» или «ACV». Значение при этом должно превышать 250 В. Соприкосновение двух проводников в одновременном режиме щупами устройства даст точные параметры напряжения между ними. Для сетей бытового назначения оптимальный показатель – 220В±10%.

Заземляющий проводник определяется с использованием характеристики сопротивления. Это показатель можно получить, выставив мультиметр на предел «Ω» или значок звонка.

Важно! Прикосновение к фазному проводу и контуру заземления во время этого процесса провоцирует короткое замыкание. Значительно возрастает вероятность ожогов и электротравм!

Способ визуального определения

Используется при определении значения проводов, если проводка смонтирована в соответствии со всеми правилами. Обычно изоляционный слой нуля имеет голубой или синий окрас, фаза – коричневый, белый или черный, а заземлению присуща зелено-желтая, двухцветная окраска. Визуально осмотр производится и в щитке, и в коробках распределения.

Последовательность процесса следующая:

  • осмотр автоматических выключателей в щитке, через которые возможно подключение проводов в двух вариантах – фаза и ноль или только фазный проводник. Заземление подключается исключительно через шину. Определите соответствие цветовой маркировки всех жил;
  • после этого необходимо вскрыть коробки распределения и осмотреть все скрутки. Убедитесь, что цвет изоляции заземления и нуля в скрутках не перепутан;
  • монтаж подключения выключателей к распределительным коробкам очень часто выполняется двухжильным проводом. Его изоляция имеет иногда другую расцветку – бело-голубую или чисто белую. Принципиального значения подобное отличие не имеет;
  • индикаторной отвертки достаточно для проверки фазы при выполнении проводки с соблюдением цветов изоляции.

Порядок определения нуля и фазы в сети двухпроводного типа

В случае отсутствия проводника заземления потребуется отыскать только фазный проводник. Для этого достаточно стандартной индикаторной отвертки.

  1. После отключения автоматического выключателя производится зачистка изоляции на проводах на участке 1-1,5 см. Концы разводятся во избежание случайного соприкосновения.
  2. Выполняем включение автоматов и касаемся отверткой по очереди зачищенных проводов. Фаза при касании вызывает свечение диода.
  3. Цветной изолентой или маркером отмечаем нужный провод. Снова выключим автомат и производим требуемые подключения.
  4. Обязательно требуется убедиться в подключении выключателя к фазе при монтаже приборов освещения. Если не выполнить это условие, потребуется для элементарной замены лампочки каждый раз полностью обесточивать квартиру из-за необходимости отключения автомата.

Как определить заземляющий провод, ноль и фазу

Установка каждого элемента в трехпроводной сети должна выполняться после уточнения назначения проводников в случае одинакового цвета изоляции проводов или отсутствии уверенности в правильном монтаже.

  • фазу легко обнаружить индикатором, маркером выполняем отметку на проводе;
  • устанавливаем мультиметр в режим измерения тока переменного вида. Придерживая один щуп на фазе, вторым поочередно касаемся двух оставшихся проводов. Ноль будет там, где значение напряжения меньше;
  • при одинаковом напряжении измеряется сопротивление провода заземления. Переставив мультиметр в нужный режим и заизолировав фазный проводник, находим элемент, который заземлен по определению – к примеру, батарея отопления или труба. Задержав один щуп на металлической поверхности, вторым по очереди касаемся проводов, назначение которых требуется определить. По отношению к металлическому элементу сопротивление провода не должно быть выше 4 ОМ, а вот для ноля этот показатель всегда больше;
  • при нейтрали, заземленной в щитке, данные проверки сопротивления могут быть недостоверными. После отключения заземления от шины, проверка выполняется обычным патроном с лампочкой и проводами. Закрепляем один провод на фазе, а вторым касаемся по очереди других. При соприкосновении с нулем происходит загорание лампочки.

При отсутствии нужных результатов обязательно обратитесь за помощью к профессиональному электрику. Прозвонка всех цепей специальными приборами будет гарантией вашей безопасности.

Похожие материалы.

В данной статье рассмотрим вопрос о том, как найти фазу и ноль при помощи пробника и мультиметра.

При необходимости обслуживания квартирной электрики, в частности замены розеток, выключателей освещения или проведении мелких ремонтных работ, возникает необходимость определения фазы и ноля. Если у человека есть некоторые познания в области основ электротехники, то ему не составит труда найти фазу и ноль. А что делать, если вы не имеете данных навыков? Поиск фазы и ноля не такой сложный процесс, как это может показаться. Рассмотрим несколько способов определения фазы и ноля.

Во-первых, определимся, что такое фаза и ноль. Вся наша энергосистема является трехфазной, в том числе и низковольтные линии, которые питают жилые дома и квартиры. Как правило, напряжение между двумя любыми фазами составляет 380 вольт — это линейное напряжение. Всем известно, что напряжение бытовой сети — 220 вольт. Как получить это напряжение?

Для этого в электроустановках рабочим напряжением 380 вольт предусмотрен нулевой провод. Если взять одну из фаз и нулевой провод, то между ними будет разность потенциалов в 220 вольт, то есть это фазное напряжение.

Для человека, не имеющего познаний в области электротехники, вышесказанное не очень понятно. Для нас важно знать, что в каждую квартиру или дом приходит одна фаза и один ноль. Подробно, что такое фаза и ноль рассмотрено .

Итак, у вас есть два провода и вам необходимо определить, какой из них фаза, а какой ноль. Во-первых, необходимо их обесточить путем отключения автоматического выключателя, который питает данную линию электрической проводки.

Затем необходимо зачистить оба провода, то есть снять с него 1-2 см изоляции. Зачищенные проводники необходимо немного развести, для того, чтобы при подаче напряжения не произошло короткого замыкания в результате их соприкосновения.

Следующий шаг — определение фазного провода. Включаем автомат, посредством которого подается напряжение на проводники. Берем индикаторную отвертку за рукоятку и одним пальцем прикасаемся до металлической части у основания рукоятки.

Помните, что категорически запрещено брать пробник ниже рукоятки, то есть за рабочую часть. Подносим пробник к одному из проводов и прикасаемся к нему рабочей частью. При этом палец остается на металлической части рукоятки.

Если лампочка индикаторной отвертки загорелась, то значит этот провод фазный, то есть фаза. Другой провод соответственно — ноль.

Если при прикосновении к проводу не загорается лампа пробника, то это нулевой провод. Соответственно другой провод — это фаза, проверить это можно прикосновением индикаторной отвертки.

А что делать, если проводка в квартире выполнена тремя проводами? В этом случае у вас есть не только фаза и ноль, но и . При помощи пробника можно без труда определить, где из трех проводов находится фаза.

Но как определить где ноль, а где защитный проводник, то есть заземляющий? В данном случае одной индикаторной отверткой не обойтись. Рассмотрим способ определения ноля в трехпроводной бытовой сети.

Определить где ноль, а где защитный (заземляющий проводник), можно при помощи мультиметра. Итак, мы уже определили фазный провод при помощи пробника. Берем мультиметр и включаем его на диапазон измерения переменного напряжения величиной 220 вольт и выше.

Берем два щупа измерительного прибора и прикасаемся одним из них к фазе, а другим к одному из двух оставшихся проводников. Фиксируем значение напряжения, которое показывает мультиметр.

Затем один из щупов оставляем на фазе, а другим прикасаемся к другому проводу и снова фиксируем значение напряжения. При прикосновении одновременно к фазе и к нулю будет показываться значение напряжение бытовой электросети, то есть примерно 220 вольт. Если прикоснуться к фазе и защитному проводнику, то значение напряжения будет несколько меньше предыдущего.

Если у вас нет пробника, то фазу можно найти и мультиметром. Для этого выбираем диапазон измерения переменного напряжения значением выше 220 вольт. К мультиметру подключены два щупа в гнезда «COM» и «V» соответственно.

Берем в руки тот щуп, который включен в гнездо с маркировкой «V» и прикасаемся им к проводникам. Если вы прикоснулись к фазе, то прибор покажет небольшое значение — 8-15 вольт. При прикосновении к нулевому проводу показания прибора останутся на нуле.

Как известно, электричество, которое поставляется к нам в дом, является трёхфазным. Напряжение между любыми двумя выходами составляет 380 В. В то же время, мы знаем, что используемое в бытовых приборах напряжение, равно 220 В. Как одно преобразуется в другое?

Важную роль здесь играет нулевой провод.
Если замерять напряжение между одной из фаз и этим проводом, то оно как раз и будет равно 220 В. В более современных розетках, предусмотрен дополнительно ещё один нулевой выход — это так называемый защитный ноль.

Возникает естественный вопрос о том, какова разница между двумя упомянутыми нулями? Первый из них, «рабочий ноль» (его мы стараемся определить) — это нейтральный контакт на трёхфазной установке генераторной подстанции, подключённый к нейтральному контакту трёхфазной установке в доме или отдельном подъезде.

Он может быть при этом, вообще не заземлён. Основное назначение состоит в создании замкнутой электрической цепи при питании бытовых приборов. Во втором случае, речь идёт именно о . Его обычно называют «защитное заземление».

В связи с достаточно сложной природой переменного тока, есть некоторые типичные взгляды на нулевой провод и на заземление, которые могут не соответствовать реальному положению вещей:

  1. «На нулевом вообще нет напряжения.»
    Это не так. Он подключён к нулевому разъёму на подстанции и предназначен для создания разности потенциалов на выходе. Иногда он находится под напряжением.
  2. «Если есть заземление, то короткого замыкания точно не будет.»
    В большинстве случаев, это так. Но при слишком быстром нарастании тока, он может не успеть вовремя уйти через заземление.
  3. «Если в кабеле две жилы одинаковые, а третья отличается, то это наверняка земля.»
    Так должно быть, но иногда это не так.

Способы определения

Цифровой мультиметр

Определение нуля и фазы путём использования мультиметра.
Этот прибор очень полезен для работ с электричеством. Он включает в себя различные возможности. Он может быть и амперметром и вольтметром или омметром.

Также, могут быть, в зависимости от конкретного типа, и другие возможности (например, измерение частоты). Эти приборы могут быть как аналоговыми, так и цифровыми.

Использование индикаторной отвёртки.
В этой отвёртке имеется прозрачная ручка. Если вставить её в розетку определённым образом, то при попадании на фазу загорится лампочка.

Есть несколько конструкций таких отвёрток. В самом простом случае, при тестировании нужно прикоснуться к концу ручки. Без этого огонёк не загорится.

При визуальном тестировании, назначение проводов можно определить по их расцветке.

Использование специального фазового
.
Это небольшой цифровой прибор, который помещается в ладони. Один из проводов нужно держать в руке, другим проверяют фазу.

Пошаговые инструкции

Расскажем более подробно о том, как производить такие работы.

При использовании мультиметра, нужно правильно установить его рабочий диапазон. Он должен составлять 220 В для переменного напряжения.

С его помощью можно решить две задачи:

  1. Определить, где фаза, а где «рабочий ноль»
    или заземление.
  2. Определить, где, собственно, заземление
    , а где нулевой выход.

Расскажем сначала о том, как выполнить первую задачу. Перед началом, нужно правильно выставить рабочий диапазон прибора. Сделаем его больше, чем 220 В. Два щупа подключены к гнёздам «COM» и «V».

Берём второй из них и прикасаемся к тестируемому отверстию розетки. Если там фаза, то на мультиметре высветится небольшое напряжение. Если фазы там нет, то будет показано нулевое напряжение.

Во втором случае, рабочее напряжение должно составлять 220В. Один провод вставляем туда, где есть фаза. Другим тестируем остальные. При попадании на заземление, будет показано ровно 220 В, в другом случае, напряжение будет немного меньше.

Использование фазового тестера

Один провод держим аккуратно пальцами, другой используем для тестирования. Если в розетке попадаем на фазу, то цифры на индикаторе будут гораздо больше нуля.
При попадании на ноль, на экране также будет показан ноль или незначительная величина напряжения.

Это устройство удобно как общедоступностью на рынке радиоизмерительного оборудования, так и тем, что измерения производятся с достаточно высокой точностью.

Использование индикаторной отвёртки

Она представляет собой на вид обычную отвёртку, но с небольшим отличием. У неё прозрачная ручка с маленькой лампочкой внутри. Это, на первый взгляд, достаточно примитивное устройство, на самом деле очень удобно.

Его достаточно просто вставить в отверстие розетки, прикоснувшись при этом пальцем к противоположному концу отвёртки.
Если есть фаза, то лампочка загорится. Если там нулевой провод или заземление, то она гореть не будет. Важно помнить, что категорически запрещено в процессе измерения прикасаться к металлической части отвёртки. Это может привести к удару током.

В некоторых случаях, фазу и нулевой провод можно определить без каких-либо приборов или приспособлений. Это можно сделать, если правильно прочесть маркировку. Это ненадёжный способ, но в некоторых случаях он может оказаться полезным.

При работе в современных домах, правила такой маркировки обычно соблюдаются.

Итак, в чём же они состоят:

  1. Тот провод, где находится фаза
    , обычно имеет коричневый или чёрный цвет.
  2. Нулевой,
    принято обозначать проводом, имеющим голубой цвет.
  3. Зелёным или жёлтым цветом
    обозначается провод, который служит для заземления.

Эти правила могли быть другими в предыдущие периоды времени. Также, в последующем они могут измениться. Поэтому, описанный способ годится только для предварительного тестирования назначения проводов.

Как различить заземление и нулевой провод при отключённой фазе?

Предположим, что ток в сети отсутствует. Есть ли какое-нибудь различие в этом случае между заземлением и нулевым проводом? На первый взгляд может показаться что они очень похожи друг на друга.

На самом деле, их функции всё же различаются. Заземление предназначено для аварийных ситуаций. Через него электрический заряд уходит в землю. Нулевой провод — это часть электрической цепи для питания бытовых электроприборов в доме.

Здесь, ток, в отличие от заземления, присутствует. Как же можно различить их? При отключённой фазе нужно просто измерить ток между этим проводом и точно известным заземлением. Если это нулевой провод, то ток, хотя и небольшой, в этом случае будет. Если же тут заземление, то никакого тока здесь быть не может.

В каких случаях может понадобиться?

При огромном разнообразии существующих электрических приборов, существует разница в том, какое электрическое питание им нужно. В различных случаях, такие вопросы решаются по-разному.

Иногда, для этого используются специальные устройства — переходники.
В некоторых случаях, является необходимым просто правильно сделанное подключение к розетке. В частности, при подключении электрической кухонной плиты, есть необходимость при подключении правильно определить, где в розетке фаза, а где «рабочий ноль».

В этом, и в аналогичных случаях, без такой информации обойтись невозможно.

Другая ситуация, где это необходимо — это разного рода ремонтные работы. При их проведении, нужно знать точно, какой провод под напряжением (он должен или быть отключён или надёжно заизолирован), а какой — нет.

При подключении многих бытовых приборов, действительно не важно с какой стороны будет фаза
, а вот для выключателя это может иметь значение. Поясним это.«Фаза» должна подаваться на выключатель, а «ноль» пусть будет подключён напрямую к лампам в люстре.

При этом, в процессе замены лампы в люстре, при выключенном выключателе, человека не ударит током даже в том случае, когда он случайно прикоснётся к .

Электричество является непременным атрибутом современной жизни. Уже трудно себе представить дом без всевозможных бытовых приборов, которые обеспечивают комфорт и облегчают хозяйке домашние хлопоты.

Но в то же время большое количество мощных потребителей негативно сказывается на электрической проводке. Часто случаются мелкие неисправности, например, стала искрить розетка, выключатель или другие поломки. Каждый раз вызывать квалифицированного электрика накладно, да и большинство подобных поломок легко можно устранить самостоятельно.

Для правильного подключения бытовых приборов и дополнительной безопасности работы с электропроводкой нужно определить не только фазу, но и ноль. Чаще всего для этого используется самый простой пробник напряжения в виде отвертки. О том, как пользоваться индикаторной отверткой и поговорим сегодня.

Принцип действия и виды индикаторов

Сегодня в виде обычной отвертки выпускается большое количество индикаторов напряжения. Все они имеют общий принцип работы, но могут отличаться устройством и формой выполнения. Условно такие индикаторы разделяют на три группы. Рассмотрим их более детально.

Простая индикаторная отвертка

Устройство обычного пробника в виде отвертки довольно простое:

  • Жало выступает в роли проводника;
  • К нему подключен тиристор, понижающий силу тока до безопасной для человека величины;
  • Следом расположен светодиод, который соединен с контактным элементом, выведенным на торец отвертки;
  • Корпус выполнен из прозрачного пластика, что позволяет видеть, когда светодиод загорается.

Такую конструкцию имеет самый простой и дешевый пробник напряжения, который позволяет определить только рабочую фазу. Ноль этой отверткой можно найти методом исключения. Для того чтобы найти фазу в проводах при помощи индикаторной отвертки, нужно поступить следующим образом:

  • Жалом отвертки поочередно прикасаются ко всем проводам контактной группы: розетки, выключателя или обрыва в проводке. При этом нужно пальцем (наиболее удобно большим) прикасаться к контактной пластине, выведенной на корпус;
  • При прикосновении к фазе, индикатор начнет светиться, а ноль свечения диода не вызывает.

Такой нехитрый способ показывает, где фаза или ноль в проводах или розетке. После этого можно правильно произвести подключение бытового прибора, для которого важно соблюдать полярность.

Обратите внимание! Такие работы производятся при включенном автомате на щитке. Если необходимо определить фазу на концах проводов, их предварительно нужно зачистить и развести в стороны, чтобы не вызвать короткое замыкание.

Отвертка с батарейкой

Индикаторные отвертки на батарейках могут быть разного вида и иметь дополнительный функционал

Принцип работы, внешний вид и устройство такого пробника напряжения ничем не отличается от вышеописанной отвертки. Отличием является наличие двух или трех батареек «таблеток», скрытых в ручке. Этот прибор является более универсальным и позволяет выполнить такие действия:

  • Найти фазу и ноль в проводах под напряжением;
  • Определить обрыв в обесточенной цепи. Для этого одного конца провода нужно коснуться рукой, а второго – щупом отвертки. Если цепь не нарушена, индикатор загорится. При обрыве в проводке, индикатор напряжения ничего не покажет;
  • Кроме этого, такой инструмент за счет наведенного магнитного поля показывает расположение скрытой проводки. Для этого отвертка пальцами берется за жало, а ручкой ведется вдоль стены. При обнаружении запитанной проводки светодиод загорится.

Совет! Такая особенность данного устройства очень полезна в случае, когда необходимо проверить стену и определить расположение проводки перед сверлением отверстия.

Универсальный пробник

Такое устройство отверткой называют больше по привычке, скорее это мини-тестер. Работает инструмент от батареек, а внешний вид сильно отличается от предыдущих вариантов. На передней панели прибора располагается два светодиода (красный и зеленый), также в зависимости от модели может быть небольшой дисплей, на который выводится показатель измеренного напряжения.

Универсальный тестер производства MASTECH

Индикатор имеет кнопку выбора режима измерения. Рассмотрим принцип и назначение различных режимов:

  • Режим O применяется для того, чтобы найти фазу контактным способом. При наличии напряжения на проводнике, загорается красный светодиод;
  • В режиме L прибор работает при пониженной чувствительности. Этот режим позволяет бесконтактно определить наличие напряжения в скрытой проводке глубиной залегания до 1,5 см. При обнаружении электромагнитного поля загорается зеленый светодиод и раздается писк зуммера;
  • Положение H обозначает режим высокой чувствительности. Этот режим позволяет найти фазу и ноль (подключенную проводку) на глубине до 3 см.

Также это устройство позволяет произвести проверку цепи на разрыв, измерить сопротивление до 100 МОм, можно определить полярность, и измерить напряжение источника постоянного тока до 36 В.

Этот прибор пригодится в качестве домашнего тестера: он позволяет проверить работоспособность лампы или другого электрического прибора с замкнутой цепью. Можно проверить любой нагревательный прибор, например, тэн или камин при пробое на корпус.

Две фазы

Разобравшись, как пользоваться индикаторной отверткой, хотелось бы рассказать об интересной неисправности в электрической сети. Бывает так, что при проверке, например, розетки, пробник определяет фазу на обоих проводах.

В этом случае не пугайтесь, ничего страшного не произошло. Скорее всего, просто пропал ноль, а фаза по замкнутой цепи пошла дальше, поэтому тестер и определяет ее на обоих проводах. Рассмотрим самые вероятные места, где мог пропасть ноль и причины, по которым это произошло:

  1. Самой распространенным местом обрыва нулевого провода является подъездный щиток. Практически всегда он находится в общем доступе, да и проводов там намотано много. Поэтому первым делом нужно проверить свой вывод на щитке, разобрать, зачистить место подсоединения и заново прикрутить ноль;
  2. Второй распространенной причиной является выбитый автомат или пробка на счетчике в самой квартире. Причиной этому могла стать повышенная перегрузка. Стоит отметить, именно потому, что это приводит к появлению фазы на обоих проводах, по новым требованиям ПУЭ установка автоматического размыкателя на нулевом проводе запрещена;
  3. Часто ноль «теряется» в распределительной коробке, расположенной в комнате. Причина – слабый контакт и повышенная нагрузка;
  4. В частных домах кабель могут повредить мыши. Причем до сих пор непонятно, чем грызунов привлекает изоляция, но факт остается. Поэтому в коттеджах не рекомендуется прокладывать открытую проводку, особенно на чердаке и под полом. Все провода должны быть уложены в штробы или дополнительно защищены;
  5. Сверление стен – один из факторов, который может повлечь за собой обрыв провода. Поэтому профессиональные электрики перед подобными работами всегда рекомендуют проверять место сверления при помощи индикатора скрытой проводки.

Подводим итоги

В заключение отметим, что пробник должен быть в любом доме. Это может быть как простая индикаторная отвертка или более дорогой электронный вариант: каждый выбирает по возможностям и потребностям. Сложности в их использовании нет никакой: при правильной эксплуатации вероятность поражения током полностью исключена.

Loading...Loading…

Понравилась статья? Поделить с друзьями:

Не пропустите также:

  • Как найти относительную молекулярную массу аммиака
  • Как вернуть прошлое исправить ошибку
  • Как найти клан в клеш рояль
  • Как найти одноклассника по майлу
  • Как найти человека arizona

  • 0 0 голоса
    Рейтинг статьи
    Подписаться
    Уведомить о
    guest

    0 комментариев
    Старые
    Новые Популярные
    Межтекстовые Отзывы
    Посмотреть все комментарии